{"title":"分数阶拉普拉斯热方程的反系数问题","authors":"Azizbek Mamanazarov, Durvudkhan Suragan","doi":"10.1007/s13540-025-00414-4","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we study inverse problems related to determining the time-dependent coefficient and unknown source function of fractional heat equations. Our approach shows that having just one set of data at an observation point ensures the existence of a weak solution for the inverse problem. Furthermore, if there is an additional datum at the observation point, it leads to a specific formula for the time-dependent source coefficient. Moreover, we investigate inverse problems involving non-local data of the fractional heat equation.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse coefficient problems for the heat equation with fractional Laplacian\",\"authors\":\"Azizbek Mamanazarov, Durvudkhan Suragan\",\"doi\":\"10.1007/s13540-025-00414-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, we study inverse problems related to determining the time-dependent coefficient and unknown source function of fractional heat equations. Our approach shows that having just one set of data at an observation point ensures the existence of a weak solution for the inverse problem. Furthermore, if there is an additional datum at the observation point, it leads to a specific formula for the time-dependent source coefficient. Moreover, we investigate inverse problems involving non-local data of the fractional heat equation.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00414-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00414-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inverse coefficient problems for the heat equation with fractional Laplacian
In the present paper, we study inverse problems related to determining the time-dependent coefficient and unknown source function of fractional heat equations. Our approach shows that having just one set of data at an observation point ensures the existence of a weak solution for the inverse problem. Furthermore, if there is an additional datum at the observation point, it leads to a specific formula for the time-dependent source coefficient. Moreover, we investigate inverse problems involving non-local data of the fractional heat equation.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.