{"title":"用强化学习调和前期和后期的紧张关系","authors":"Mohit K. Sharma, M. Sami","doi":"10.1088/1475-7516/2025/05/002","DOIUrl":null,"url":null,"abstract":"We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the ΛCDM model. Our results demonstrate a tendency to weaken both early and late time tensions in a completely model-independent manner.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"13 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling early and late time tensions with Reinforcement Learning\",\"authors\":\"Mohit K. Sharma, M. Sami\",\"doi\":\"10.1088/1475-7516/2025/05/002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the ΛCDM model. Our results demonstrate a tendency to weaken both early and late time tensions in a completely model-independent manner.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Reconciling early and late time tensions with Reinforcement Learning
We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the ΛCDM model. Our results demonstrate a tendency to weaken both early and late time tensions in a completely model-independent manner.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.