{"title":"夏季南海北部强陆架锋附近的沿海风动上升流引起了海温变化的天气-季节内变化","authors":"Junyi Li, Fangguo Zhai, Cong Liu, Yanzhen Gu, Peiliang Li, Guanqiong Ye","doi":"10.3389/fmars.2025.1553764","DOIUrl":null,"url":null,"abstract":"Tidal variability and coastal upwelling are some of the most important processes in global shelf seas. With observations and high-resolution numerical simulation, we investigate the synoptic-to-intraseasonal variations in tidal temperature variability to the east of the Leizhou Peninsula and Qiongzhou Strait in the northern South China Sea and clarify the underlying dynamics. The results indicate that tidal temperature variability is most significant in a narrow meridional band in shallow waters (< 40 m) to the east of the Leizhou Peninsula and Qiongzhou Strait in the summer when there are strong thermal fronts located on the sea floor slope. The summer mean diurnal standard deviation of hourly temperature can reach up to 0.93°C. Tidal temperature variability in summer exhibits no spring-neap cycles but strong synoptic-to-intraseasonal variations, with the diurnal standard deviation of hourly temperature varying significantly from 0°C to 2.36°C. Further analyses indicate that synoptic-to-intraseasonal variations in tidal temperature variability in the summer are predominantly caused by wind-driven coastal upwelling. When southerly winds are weak, coastal upwelling is weak and leads to the offshore thermal front being located far away from the Leizhou Peninsula. Waters between the offshore thermal front and the Leizhou Peninsula/Qiongzhou Strait are mixed well and experience insignificant tidal temperature variability. When southerly winds are strong, coastal upwelling is strong and results in the offshore thermal front moving westward close to the Leizhou Peninsula. This facilitates the formation of the nearshore thermal front in combination with the complex topography and tidal currents. Tidal current-induced swinging of the nearshore thermal front then generates significant tidal temperature variability. The above results highlight the importance of coastal upwelling/downwelling in modulating tidal temperature variability near ocean thermal fronts in the shelf seas.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"49 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind-driven coastal upwelling causes synoptic-to-intraseasonal variations in tidal temperature variability near a strong shelf front in the northern South China Sea in summer\",\"authors\":\"Junyi Li, Fangguo Zhai, Cong Liu, Yanzhen Gu, Peiliang Li, Guanqiong Ye\",\"doi\":\"10.3389/fmars.2025.1553764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tidal variability and coastal upwelling are some of the most important processes in global shelf seas. With observations and high-resolution numerical simulation, we investigate the synoptic-to-intraseasonal variations in tidal temperature variability to the east of the Leizhou Peninsula and Qiongzhou Strait in the northern South China Sea and clarify the underlying dynamics. The results indicate that tidal temperature variability is most significant in a narrow meridional band in shallow waters (< 40 m) to the east of the Leizhou Peninsula and Qiongzhou Strait in the summer when there are strong thermal fronts located on the sea floor slope. The summer mean diurnal standard deviation of hourly temperature can reach up to 0.93°C. Tidal temperature variability in summer exhibits no spring-neap cycles but strong synoptic-to-intraseasonal variations, with the diurnal standard deviation of hourly temperature varying significantly from 0°C to 2.36°C. Further analyses indicate that synoptic-to-intraseasonal variations in tidal temperature variability in the summer are predominantly caused by wind-driven coastal upwelling. When southerly winds are weak, coastal upwelling is weak and leads to the offshore thermal front being located far away from the Leizhou Peninsula. Waters between the offshore thermal front and the Leizhou Peninsula/Qiongzhou Strait are mixed well and experience insignificant tidal temperature variability. When southerly winds are strong, coastal upwelling is strong and results in the offshore thermal front moving westward close to the Leizhou Peninsula. This facilitates the formation of the nearshore thermal front in combination with the complex topography and tidal currents. Tidal current-induced swinging of the nearshore thermal front then generates significant tidal temperature variability. The above results highlight the importance of coastal upwelling/downwelling in modulating tidal temperature variability near ocean thermal fronts in the shelf seas.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2025.1553764\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1553764","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Wind-driven coastal upwelling causes synoptic-to-intraseasonal variations in tidal temperature variability near a strong shelf front in the northern South China Sea in summer
Tidal variability and coastal upwelling are some of the most important processes in global shelf seas. With observations and high-resolution numerical simulation, we investigate the synoptic-to-intraseasonal variations in tidal temperature variability to the east of the Leizhou Peninsula and Qiongzhou Strait in the northern South China Sea and clarify the underlying dynamics. The results indicate that tidal temperature variability is most significant in a narrow meridional band in shallow waters (< 40 m) to the east of the Leizhou Peninsula and Qiongzhou Strait in the summer when there are strong thermal fronts located on the sea floor slope. The summer mean diurnal standard deviation of hourly temperature can reach up to 0.93°C. Tidal temperature variability in summer exhibits no spring-neap cycles but strong synoptic-to-intraseasonal variations, with the diurnal standard deviation of hourly temperature varying significantly from 0°C to 2.36°C. Further analyses indicate that synoptic-to-intraseasonal variations in tidal temperature variability in the summer are predominantly caused by wind-driven coastal upwelling. When southerly winds are weak, coastal upwelling is weak and leads to the offshore thermal front being located far away from the Leizhou Peninsula. Waters between the offshore thermal front and the Leizhou Peninsula/Qiongzhou Strait are mixed well and experience insignificant tidal temperature variability. When southerly winds are strong, coastal upwelling is strong and results in the offshore thermal front moving westward close to the Leizhou Peninsula. This facilitates the formation of the nearshore thermal front in combination with the complex topography and tidal currents. Tidal current-induced swinging of the nearshore thermal front then generates significant tidal temperature variability. The above results highlight the importance of coastal upwelling/downwelling in modulating tidal temperature variability near ocean thermal fronts in the shelf seas.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.