Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia
{"title":"在基于等基因的承诺中避免可信设置","authors":"Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia","doi":"10.1007/s10623-025-01633-9","DOIUrl":null,"url":null,"abstract":"<p>In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a curve of unknown endomorphism ring, and the only known way to generate such supersingular curves is to rely on a trusted party or on some expensive multiparty computation. We observe that if the degree of the endomorphism in play is well chosen, then the knowledge of the endomorphism ring is not sufficient to efficiently compute such an endomorphism and in some particular cases, one can even prove that endomorphism of a certain degree do not exist. Leveraging these observations, we adapt Sterner’s commitment scheme in such a way that the endomorphism ring of the starting curve can be known and public. This allows us to obtain isogeny-based commitment schemes which can be instantiated without trusted setup requirements.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"51 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding trusted setup in isogeny-based commitments\",\"authors\":\"Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia\",\"doi\":\"10.1007/s10623-025-01633-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a curve of unknown endomorphism ring, and the only known way to generate such supersingular curves is to rely on a trusted party or on some expensive multiparty computation. We observe that if the degree of the endomorphism in play is well chosen, then the knowledge of the endomorphism ring is not sufficient to efficiently compute such an endomorphism and in some particular cases, one can even prove that endomorphism of a certain degree do not exist. Leveraging these observations, we adapt Sterner’s commitment scheme in such a way that the endomorphism ring of the starting curve can be known and public. This allows us to obtain isogeny-based commitment schemes which can be instantiated without trusted setup requirements.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-025-01633-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01633-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Avoiding trusted setup in isogeny-based commitments
In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a curve of unknown endomorphism ring, and the only known way to generate such supersingular curves is to rely on a trusted party or on some expensive multiparty computation. We observe that if the degree of the endomorphism in play is well chosen, then the knowledge of the endomorphism ring is not sufficient to efficiently compute such an endomorphism and in some particular cases, one can even prove that endomorphism of a certain degree do not exist. Leveraging these observations, we adapt Sterner’s commitment scheme in such a way that the endomorphism ring of the starting curve can be known and public. This allows us to obtain isogeny-based commitment schemes which can be instantiated without trusted setup requirements.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.