Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel
{"title":"量子机器学习用于数字健康的系统综述","authors":"Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel","doi":"10.1038/s41746-025-01597-z","DOIUrl":null,"url":null,"abstract":"<p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"51 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of quantum machine learning for digital health\",\"authors\":\"Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel\",\"doi\":\"10.1038/s41746-025-01597-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01597-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01597-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
A systematic review of quantum machine learning for digital health
The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.