量子机器学习用于数字健康的系统综述

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel
{"title":"量子机器学习用于数字健康的系统综述","authors":"Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel","doi":"10.1038/s41746-025-01597-z","DOIUrl":null,"url":null,"abstract":"<p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"51 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of quantum machine learning for digital health\",\"authors\":\"Riddhi S. Gupta, Carolyn E. Wood, Teyl Engstrom, Jason D. Pole, Sally Shrapnel\",\"doi\":\"10.1038/s41746-025-01597-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01597-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01597-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

卫生数据数字化的增长为使用算法技术进行数据分析提供了机会。本系统综述评估了量子机器学习(QML)算法在临床决策或卫生服务提供方面是否优于现有的经典方法。纳入的研究使用电子健康/医疗记录,或合理的代理数据,以及为量子计算硬件设计的QML算法。检索PubMed、Embase、IEEE、Scopus和预印本服务器arXiv数据库,检索日期为2015年1月1日至2024年10月6日的研究。在最初的4915项研究中,169项符合条件,123项因不够严谨而被排除。只有16项研究考虑了涉及量子硬件或噪声模拟的实际操作条件。我们发现几乎所有遇到的量子模型都是一般QML结构的子集。数据编码的可伸缩性部分得到了解决,但需要限制性的硬件假设。总体而言,量子算法和经典算法之间的性能差异没有显示出支持数字健康中经验量子效用的一致趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A systematic review of quantum machine learning for digital health

A systematic review of quantum machine learning for digital health

The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信