Hassan Al-Hamdo, Tobias Wagner, Philipp Schwenke, Gutenberg Kendzo, Maximilian Dausend, Laura Scheuer, Misbah Yaqoob, Vitaliy I. Vasyuchka, Philipp Pirro, Olena Gomonay, Mathias Weiler
{"title":"通过选择交换耦合α−Fe2O3 /坡莫合金异质结构杂化界面的晶体取向,可调增强磁化动力学","authors":"Hassan Al-Hamdo, Tobias Wagner, Philipp Schwenke, Gutenberg Kendzo, Maximilian Dausend, Laura Scheuer, Misbah Yaqoob, Vitaliy I. Vasyuchka, Philipp Pirro, Olena Gomonay, Mathias Weiler","doi":"10.1103/physrevb.111.l180401","DOIUrl":null,"url":null,"abstract":"We investigate spin dynamics in α</a:mi>−</a:mtext>Fe</a:mi>2</a:mn></a:msub>O</a:mi>3</a:mn></a:msub>/</a:mo>Ni</a:mi>80</a:mn></a:msub>Fe</a:mi>20</a:mn></a:msub></a:mrow></a:math> (Py) heterostructures, uncovering a robust mechanism for designing the ferromagnetic resonance (FMR) frequency through control of crystal orientation, temperature, and applied magnetic field. Employing cryogenic ferromagnetic resonance spectroscopy, we demonstrate that the relative orientation of the Néel vector of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>α</c:mi><c:mtext>−</c:mtext><c:msub><c:mi>Fe</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\"normal\">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> and the magnetization of the Py layer is highly tunable across the Morin transition temperature (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:msub><e:mi>T</e:mi><e:mtext>M</e:mtext></e:msub></e:math>). Central to our findings is the pivotal role of crystal orientation in governing the spin dynamics, with the reorientation of the Néel vector serving as a complementary mechanism that further modulates the system's behavior. Our experiments and corroborating theoretical model reveal distinct resonance behavior for different crystal orientations, highlighting the pivotal role of the mutual Néel vector and magnetization geometry in dictating FMR frequencies. In this way, we can tune the FMR frequencies up to a tenfold increase by manipulating the mutual Néel vector/magnetization configuration. Our study comprises all common <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>α</f:mi><f:mtext>−</f:mtext><f:msub><f:mi>Fe</f:mi><f:mn>2</f:mn></f:msub><f:msub><f:mi mathvariant=\"normal\">O</f:mi><f:mn>3</f:mn></f:msub></f:mrow></f:math> crystal orientations and develops a unified theoretical description of the ensuing spin dynamics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable enhancement of magnetization dynamics by selection of the crystallographic orientation of the hybrid interface of exchange-coupled α−Fe2O3 /permalloy heterostructures\",\"authors\":\"Hassan Al-Hamdo, Tobias Wagner, Philipp Schwenke, Gutenberg Kendzo, Maximilian Dausend, Laura Scheuer, Misbah Yaqoob, Vitaliy I. Vasyuchka, Philipp Pirro, Olena Gomonay, Mathias Weiler\",\"doi\":\"10.1103/physrevb.111.l180401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate spin dynamics in α</a:mi>−</a:mtext>Fe</a:mi>2</a:mn></a:msub>O</a:mi>3</a:mn></a:msub>/</a:mo>Ni</a:mi>80</a:mn></a:msub>Fe</a:mi>20</a:mn></a:msub></a:mrow></a:math> (Py) heterostructures, uncovering a robust mechanism for designing the ferromagnetic resonance (FMR) frequency through control of crystal orientation, temperature, and applied magnetic field. Employing cryogenic ferromagnetic resonance spectroscopy, we demonstrate that the relative orientation of the Néel vector of <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:mrow><c:mi>α</c:mi><c:mtext>−</c:mtext><c:msub><c:mi>Fe</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\\\"normal\\\">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> and the magnetization of the Py layer is highly tunable across the Morin transition temperature (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\"><e:msub><e:mi>T</e:mi><e:mtext>M</e:mtext></e:msub></e:math>). Central to our findings is the pivotal role of crystal orientation in governing the spin dynamics, with the reorientation of the Néel vector serving as a complementary mechanism that further modulates the system's behavior. Our experiments and corroborating theoretical model reveal distinct resonance behavior for different crystal orientations, highlighting the pivotal role of the mutual Néel vector and magnetization geometry in dictating FMR frequencies. In this way, we can tune the FMR frequencies up to a tenfold increase by manipulating the mutual Néel vector/magnetization configuration. Our study comprises all common <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mrow><f:mi>α</f:mi><f:mtext>−</f:mtext><f:msub><f:mi>Fe</f:mi><f:mn>2</f:mn></f:msub><f:msub><f:mi mathvariant=\\\"normal\\\">O</f:mi><f:mn>3</f:mn></f:msub></f:mrow></f:math> crystal orientations and develops a unified theoretical description of the ensuing spin dynamics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.l180401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.l180401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Tunable enhancement of magnetization dynamics by selection of the crystallographic orientation of the hybrid interface of exchange-coupled α−Fe2O3 /permalloy heterostructures
We investigate spin dynamics in α−Fe2O3/Ni80Fe20 (Py) heterostructures, uncovering a robust mechanism for designing the ferromagnetic resonance (FMR) frequency through control of crystal orientation, temperature, and applied magnetic field. Employing cryogenic ferromagnetic resonance spectroscopy, we demonstrate that the relative orientation of the Néel vector of α−Fe2O3 and the magnetization of the Py layer is highly tunable across the Morin transition temperature (TM). Central to our findings is the pivotal role of crystal orientation in governing the spin dynamics, with the reorientation of the Néel vector serving as a complementary mechanism that further modulates the system's behavior. Our experiments and corroborating theoretical model reveal distinct resonance behavior for different crystal orientations, highlighting the pivotal role of the mutual Néel vector and magnetization geometry in dictating FMR frequencies. In this way, we can tune the FMR frequencies up to a tenfold increase by manipulating the mutual Néel vector/magnetization configuration. Our study comprises all common α−Fe2O3 crystal orientations and develops a unified theoretical description of the ensuing spin dynamics. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter