金属间弥散强化铁素体高温合金,具有优异的抗辐射诱发硬化性能

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kan Ma, Pedro A. Ferreirós, Thomas W. Pfeifer, Robert G. Abernethy, Sophia von Tiedemann, Nianhua Peng, Graeme Greaves, Colin Ophus, Kai Sun, Anamul H Mir, Lumin Wang, Shasha Huang, Shijun Zhao, Patrick E. Hopkins, Christopher D. Hardie, Alexander J. Knowles
{"title":"金属间弥散强化铁素体高温合金,具有优异的抗辐射诱发硬化性能","authors":"Kan Ma, Pedro A. Ferreirós, Thomas W. Pfeifer, Robert G. Abernethy, Sophia von Tiedemann, Nianhua Peng, Graeme Greaves, Colin Ophus, Kai Sun, Anamul H Mir, Lumin Wang, Shasha Huang, Shijun Zhao, Patrick E. Hopkins, Christopher D. Hardie, Alexander J. Knowles","doi":"10.1016/j.actamat.2025.121095","DOIUrl":null,"url":null,"abstract":"Intermetallic dispersion-strengthening (IDS) using nano-scale coherent intermetallic precipitates offers a potent strategy to produce high-strength and radiation-resistant steels, whilst addressing the manufacturability challenges of analogous oxide dispersion-strengthened (ODS) steels. However, their performance with intermetallic stability under irradiation damage, such as radiation-induced hardening (RIH), whilst hypothesised, is undemonstrated. Here, we report on a model IDS α(A2) + α’(L2<sub>1</sub>) Fe-Ni-Al-Ti ferritic superalloy, which exhibits exceptional resistance to RIH with near-zero hardening after irradiation at 300°C 1 dpa, in contrast to significant RIH in a counterpart coarse precipitate alloy (increase in nano-hardness of 1.0 GPa) and Eurofer97 (0.7 GPa). This irradiation resistance is attributed to the high density of semi-coherent precipitate-matrix interfaces, and partial-disordering L2<sub>1</sub>-&gt;B2 which causes a decrease in anti-phase boundary energy. High interface density with localised interfacial strain offers effective sinks, suppressing defect populations compared to the counterpart with lower interface density. Meanwhile, atomic resolution spectroscopy and irradiation with in-situ transmission electron microscopy show that the disordering stems from Al-rich and Ti-rich sublattices mixing in the initial L2<sub>1</sub>-Ni<sub>2</sub>AlTi structure below 500°C, forming metastable B2-Ni(Al,Ti). Combined, the high interface density and radiation-induced intermetallic disordering underpin the remarkable radiation tolerance, demonstrating the IDS concept as a promising radiation-resistant materials design strategy.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"3 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermetallic dispersion-strengthened ferritic superalloys with exceptional resistance to radiation-induced hardening\",\"authors\":\"Kan Ma, Pedro A. Ferreirós, Thomas W. Pfeifer, Robert G. Abernethy, Sophia von Tiedemann, Nianhua Peng, Graeme Greaves, Colin Ophus, Kai Sun, Anamul H Mir, Lumin Wang, Shasha Huang, Shijun Zhao, Patrick E. Hopkins, Christopher D. Hardie, Alexander J. Knowles\",\"doi\":\"10.1016/j.actamat.2025.121095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermetallic dispersion-strengthening (IDS) using nano-scale coherent intermetallic precipitates offers a potent strategy to produce high-strength and radiation-resistant steels, whilst addressing the manufacturability challenges of analogous oxide dispersion-strengthened (ODS) steels. However, their performance with intermetallic stability under irradiation damage, such as radiation-induced hardening (RIH), whilst hypothesised, is undemonstrated. Here, we report on a model IDS α(A2) + α’(L2<sub>1</sub>) Fe-Ni-Al-Ti ferritic superalloy, which exhibits exceptional resistance to RIH with near-zero hardening after irradiation at 300°C 1 dpa, in contrast to significant RIH in a counterpart coarse precipitate alloy (increase in nano-hardness of 1.0 GPa) and Eurofer97 (0.7 GPa). This irradiation resistance is attributed to the high density of semi-coherent precipitate-matrix interfaces, and partial-disordering L2<sub>1</sub>-&gt;B2 which causes a decrease in anti-phase boundary energy. High interface density with localised interfacial strain offers effective sinks, suppressing defect populations compared to the counterpart with lower interface density. Meanwhile, atomic resolution spectroscopy and irradiation with in-situ transmission electron microscopy show that the disordering stems from Al-rich and Ti-rich sublattices mixing in the initial L2<sub>1</sub>-Ni<sub>2</sub>AlTi structure below 500°C, forming metastable B2-Ni(Al,Ti). Combined, the high interface density and radiation-induced intermetallic disordering underpin the remarkable radiation tolerance, demonstrating the IDS concept as a promising radiation-resistant materials design strategy.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121095\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用纳米级相干金属间析出物进行金属间弥散强化(IDS)为生产高强度和抗辐射钢提供了一种有效的策略,同时解决了类似氧化物弥散强化(ODS)钢的可制造性挑战。然而,它们在辐照损伤下的金属间稳定性表现,如辐射诱发硬化(RIH),虽然是假设的,但尚未得到证实。在这里,我们报道了一种模型IDS α(A2) + α ' (L21) Fe-Ni-Al-Ti铁素体高温合金,该合金在300°C 1 dpa辐照后表现出优异的抗RIH性能,几乎为零硬化,而与之相对的粗相合金(纳米硬度增加1.0 GPa)和Eurofer97 (0.7 GPa)具有显著的RIH性能。这种抗辐照性能主要是由于半相干析出-基体界面的高密度和部分无序的L21->;B2导致了反相边界能的降低。与低界面密度相比,具有局部界面应变的高界面密度提供了有效的吸收,抑制了缺陷数量。同时,原子分辨光谱和原位透射电镜分析表明,在500℃以下,L21-Ni2AlTi初始结构中富Al亚晶格和富Ti亚晶格混合,形成亚稳态B2-Ni(Al,Ti)。高界面密度和辐射诱导的金属间无序结合在一起,支撑了卓越的辐射耐受性,证明了IDS概念是一种很有前途的抗辐射材料设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intermetallic dispersion-strengthened ferritic superalloys with exceptional resistance to radiation-induced hardening

Intermetallic dispersion-strengthened ferritic superalloys with exceptional resistance to radiation-induced hardening
Intermetallic dispersion-strengthening (IDS) using nano-scale coherent intermetallic precipitates offers a potent strategy to produce high-strength and radiation-resistant steels, whilst addressing the manufacturability challenges of analogous oxide dispersion-strengthened (ODS) steels. However, their performance with intermetallic stability under irradiation damage, such as radiation-induced hardening (RIH), whilst hypothesised, is undemonstrated. Here, we report on a model IDS α(A2) + α’(L21) Fe-Ni-Al-Ti ferritic superalloy, which exhibits exceptional resistance to RIH with near-zero hardening after irradiation at 300°C 1 dpa, in contrast to significant RIH in a counterpart coarse precipitate alloy (increase in nano-hardness of 1.0 GPa) and Eurofer97 (0.7 GPa). This irradiation resistance is attributed to the high density of semi-coherent precipitate-matrix interfaces, and partial-disordering L21->B2 which causes a decrease in anti-phase boundary energy. High interface density with localised interfacial strain offers effective sinks, suppressing defect populations compared to the counterpart with lower interface density. Meanwhile, atomic resolution spectroscopy and irradiation with in-situ transmission electron microscopy show that the disordering stems from Al-rich and Ti-rich sublattices mixing in the initial L21-Ni2AlTi structure below 500°C, forming metastable B2-Ni(Al,Ti). Combined, the high interface density and radiation-induced intermetallic disordering underpin the remarkable radiation tolerance, demonstrating the IDS concept as a promising radiation-resistant materials design strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信