Shuai Li, Wenqiang Wu, Yao Han, Wei Sun, Lixia Li, Yanhao Dong, Chang-An Wang
{"title":"氧化铝的晶界迁移转变","authors":"Shuai Li, Wenqiang Wu, Yao Han, Wei Sun, Lixia Li, Yanhao Dong, Chang-An Wang","doi":"10.1111/jace.20537","DOIUrl":null,"url":null,"abstract":"<p>Alumina is a classical model system to study the mass transport, sintering, and microstructural evolution of ceramics. It is known to have strong crystal anisotropy and abnormal grain growth, that is, abnormally accelerated grain boundary mobility of a single or some grain boundaries leading to fast growth of some grains in consumption of their neighboring grains. Here, we reported another phenomenon in pressurelessly sintered fine-grain alumina at relatively low temperatures. Statistically averaged grain boundary mobilities of alumina between 1300°C and 1500°C were systematically calculated in the normal parabolic growth regime and sample microstructure with weak anisotropy. While the higher temperature data at 1400–1500°C with a reasonably activation energy of 4.9 eV agree well with extrapolated ones from Dillon and Harmer, the lower temperature data at 1300–1400°C show rapid slowdown with a very large apparent activation energy of 9.0 eV. Previously, such grain boundary mobility transition was only reported in cubic yttria-stabilized zirconia and body-centered cubic tungsten, both with high symmetric and low anisotropy. The new report of similar phenomenon in high-anisotropy alumina system suggests a general feature of grain boundary mobility quenching at low temperatures and a sweet processing window to sinter fine ceramics with extrinsically controlled microstructure, properties, and reliability.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain boundary mobility transition in alumina\",\"authors\":\"Shuai Li, Wenqiang Wu, Yao Han, Wei Sun, Lixia Li, Yanhao Dong, Chang-An Wang\",\"doi\":\"10.1111/jace.20537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alumina is a classical model system to study the mass transport, sintering, and microstructural evolution of ceramics. It is known to have strong crystal anisotropy and abnormal grain growth, that is, abnormally accelerated grain boundary mobility of a single or some grain boundaries leading to fast growth of some grains in consumption of their neighboring grains. Here, we reported another phenomenon in pressurelessly sintered fine-grain alumina at relatively low temperatures. Statistically averaged grain boundary mobilities of alumina between 1300°C and 1500°C were systematically calculated in the normal parabolic growth regime and sample microstructure with weak anisotropy. While the higher temperature data at 1400–1500°C with a reasonably activation energy of 4.9 eV agree well with extrapolated ones from Dillon and Harmer, the lower temperature data at 1300–1400°C show rapid slowdown with a very large apparent activation energy of 9.0 eV. Previously, such grain boundary mobility transition was only reported in cubic yttria-stabilized zirconia and body-centered cubic tungsten, both with high symmetric and low anisotropy. The new report of similar phenomenon in high-anisotropy alumina system suggests a general feature of grain boundary mobility quenching at low temperatures and a sweet processing window to sinter fine ceramics with extrinsically controlled microstructure, properties, and reliability.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20537\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20537","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Alumina is a classical model system to study the mass transport, sintering, and microstructural evolution of ceramics. It is known to have strong crystal anisotropy and abnormal grain growth, that is, abnormally accelerated grain boundary mobility of a single or some grain boundaries leading to fast growth of some grains in consumption of their neighboring grains. Here, we reported another phenomenon in pressurelessly sintered fine-grain alumina at relatively low temperatures. Statistically averaged grain boundary mobilities of alumina between 1300°C and 1500°C were systematically calculated in the normal parabolic growth regime and sample microstructure with weak anisotropy. While the higher temperature data at 1400–1500°C with a reasonably activation energy of 4.9 eV agree well with extrapolated ones from Dillon and Harmer, the lower temperature data at 1300–1400°C show rapid slowdown with a very large apparent activation energy of 9.0 eV. Previously, such grain boundary mobility transition was only reported in cubic yttria-stabilized zirconia and body-centered cubic tungsten, both with high symmetric and low anisotropy. The new report of similar phenomenon in high-anisotropy alumina system suggests a general feature of grain boundary mobility quenching at low temperatures and a sweet processing window to sinter fine ceramics with extrinsically controlled microstructure, properties, and reliability.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.