La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12纳米复合材料在石榴石型固态电解质中的助烧结效果

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Teruaki Fuchigami, Hayato Yamamoto, Tanibata Naoto, Sawao Honda, Masanobu Nakayama, Ken-ichi Kakimoto
{"title":"La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12纳米复合材料在石榴石型固态电解质中的助烧结效果","authors":"Teruaki Fuchigami,&nbsp;Hayato Yamamoto,&nbsp;Tanibata Naoto,&nbsp;Sawao Honda,&nbsp;Masanobu Nakayama,&nbsp;Ken-ichi Kakimoto","doi":"10.1111/jace.20484","DOIUrl":null,"url":null,"abstract":"<p>Garnet-type lithium lanthanum zirconium oxide is a promising solid electrolyte for lithium–oxygen batteries owing to its high ionic conductivity and stability against Li metal anodes. The development of novel sintering aids is crucial for achieving densification, grain growth, and the formation of Li conducting and mechanically strong grain interfaces, enabling ionic conductivity &gt;10<sup>−3</sup> S/cm and long-term stability. In this study, 120 nm composite nanoparticles of La<sub>2</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>7</sub>/Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> were synthesized via planetary ball milling of Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) microparticles followed by annealing under Ar atmosphere at 900°C. The presence of the La<sub>2</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>7</sub> layer and size effect in the composite nanoparticles facilitated the sintering of cubic LLZTO microparticles at 1160°C, resulting in improvement of ionic conductivity (3.9 × 10<sup>−4</sup> S/cm) and Vickers hardness (6.3 GPa) without significant particle growth. The mixing ratio of the composite nanoparticles was optimized at 20 wt%. Simulation of the nanoparticle arrangement on the microparticles with various mixing ratios revealed that adding 10‒20 wt% nanoparticles is essential to cover microparticles with a single layer, suppressing highly resistive grain boundary formation.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20484","citationCount":"0","resultStr":"{\"title\":\"Sintering aid effect of La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12 nanocomposite in garnet-type solid-state electrolyte\",\"authors\":\"Teruaki Fuchigami,&nbsp;Hayato Yamamoto,&nbsp;Tanibata Naoto,&nbsp;Sawao Honda,&nbsp;Masanobu Nakayama,&nbsp;Ken-ichi Kakimoto\",\"doi\":\"10.1111/jace.20484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Garnet-type lithium lanthanum zirconium oxide is a promising solid electrolyte for lithium–oxygen batteries owing to its high ionic conductivity and stability against Li metal anodes. The development of novel sintering aids is crucial for achieving densification, grain growth, and the formation of Li conducting and mechanically strong grain interfaces, enabling ionic conductivity &gt;10<sup>−3</sup> S/cm and long-term stability. In this study, 120 nm composite nanoparticles of La<sub>2</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>7</sub>/Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> were synthesized via planetary ball milling of Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) microparticles followed by annealing under Ar atmosphere at 900°C. The presence of the La<sub>2</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>7</sub> layer and size effect in the composite nanoparticles facilitated the sintering of cubic LLZTO microparticles at 1160°C, resulting in improvement of ionic conductivity (3.9 × 10<sup>−4</sup> S/cm) and Vickers hardness (6.3 GPa) without significant particle growth. The mixing ratio of the composite nanoparticles was optimized at 20 wt%. Simulation of the nanoparticle arrangement on the microparticles with various mixing ratios revealed that adding 10‒20 wt% nanoparticles is essential to cover microparticles with a single layer, suppressing highly resistive grain boundary formation.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20484\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20484\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型锂镧氧化锆具有较高的离子电导率和对锂金属阳极的稳定性,是一种很有前途的锂氧电池固体电解质。新型烧结助剂的开发对于实现致密化、晶粒生长、形成Li导电和机械强晶粒界面、实现离子电导率>;10−3 S/cm和长期稳定性至关重要。本研究采用行星球磨法制备了la2zr1.4 ta0.6 o12 (LLZTO)微球,并在900℃氩气气氛下退火,合成了120 nm的La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12复合纳米粒子。la2zr1.4 ta0.67层的存在和尺寸效应促进了LLZTO颗粒在1160℃下的烧结,提高了离子电导率(3.9 × 10−4 S/cm)和维氏硬度(6.3 GPa),但没有明显的颗粒生长。优化复合纳米颗粒的混合比为20 wt%。对不同混合比例的纳米粒子在微粒子上排列的模拟表明,添加10-20 wt%的纳米粒子对于单层覆盖微粒子是必要的,可以抑制高电阻性晶界的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sintering aid effect of La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12 nanocomposite in garnet-type solid-state electrolyte

Sintering aid effect of La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12 nanocomposite in garnet-type solid-state electrolyte

Garnet-type lithium lanthanum zirconium oxide is a promising solid electrolyte for lithium–oxygen batteries owing to its high ionic conductivity and stability against Li metal anodes. The development of novel sintering aids is crucial for achieving densification, grain growth, and the formation of Li conducting and mechanically strong grain interfaces, enabling ionic conductivity >10−3 S/cm and long-term stability. In this study, 120 nm composite nanoparticles of La2Zr1.4Ta0.6O7/Li6.4La3Zr1.4Ta0.6O12 were synthesized via planetary ball milling of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) microparticles followed by annealing under Ar atmosphere at 900°C. The presence of the La2Zr1.4Ta0.6O7 layer and size effect in the composite nanoparticles facilitated the sintering of cubic LLZTO microparticles at 1160°C, resulting in improvement of ionic conductivity (3.9 × 10−4 S/cm) and Vickers hardness (6.3 GPa) without significant particle growth. The mixing ratio of the composite nanoparticles was optimized at 20 wt%. Simulation of the nanoparticle arrangement on the microparticles with various mixing ratios revealed that adding 10‒20 wt% nanoparticles is essential to cover microparticles with a single layer, suppressing highly resistive grain boundary formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信