人工智能驱动的软磁材料优化创新综述:当前趋势与未来展望

MetalMat Pub Date : 2025-04-06 DOI:10.1002/metm.70001
Yichuan Tang, Shaopeng Liu, Silong Li, Ruonan Ma, Yue Li, Kun Wang, Minxia Fang, Chao Zhou, Sen Yang, Yin Zhang
{"title":"人工智能驱动的软磁材料优化创新综述:当前趋势与未来展望","authors":"Yichuan Tang,&nbsp;Shaopeng Liu,&nbsp;Silong Li,&nbsp;Ruonan Ma,&nbsp;Yue Li,&nbsp;Kun Wang,&nbsp;Minxia Fang,&nbsp;Chao Zhou,&nbsp;Sen Yang,&nbsp;Yin Zhang","doi":"10.1002/metm.70001","DOIUrl":null,"url":null,"abstract":"<p>With the continuous accumulation of data, machine learning is playing an increasingly important role in materials science, especially demonstrating significant advantages in predicting material compositions and developing new alloy systems for soft magnetic materials. However, currently, it mainly focuses on composition optimization while often neglecting the impact of structure and fundamental physical parameters. On this matter, we have discussed model selection in machine learning modeling, the issues encountered, and the limitations of the composition-focused approach. Through insights gained from research in other material fields, it is highlighted that integrating machine learning with other computational methods such as first-principles calculations and phase diagram computations can significantly enhance the predictive capabilities of machine learning. We analyzed these AI-enhanced cases and highlighted how they have the potential to lead to further breakthroughs in soft magnetic materials.</p>","PeriodicalId":100919,"journal":{"name":"MetalMat","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.70001","citationCount":"0","resultStr":"{\"title\":\"A Review of Artificial Intelligence-Driven Innovations in Soft Magnetic Materials Optimization: Current Trends and Future Horizons\",\"authors\":\"Yichuan Tang,&nbsp;Shaopeng Liu,&nbsp;Silong Li,&nbsp;Ruonan Ma,&nbsp;Yue Li,&nbsp;Kun Wang,&nbsp;Minxia Fang,&nbsp;Chao Zhou,&nbsp;Sen Yang,&nbsp;Yin Zhang\",\"doi\":\"10.1002/metm.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the continuous accumulation of data, machine learning is playing an increasingly important role in materials science, especially demonstrating significant advantages in predicting material compositions and developing new alloy systems for soft magnetic materials. However, currently, it mainly focuses on composition optimization while often neglecting the impact of structure and fundamental physical parameters. On this matter, we have discussed model selection in machine learning modeling, the issues encountered, and the limitations of the composition-focused approach. Through insights gained from research in other material fields, it is highlighted that integrating machine learning with other computational methods such as first-principles calculations and phase diagram computations can significantly enhance the predictive capabilities of machine learning. We analyzed these AI-enhanced cases and highlighted how they have the potential to lead to further breakthroughs in soft magnetic materials.</p>\",\"PeriodicalId\":100919,\"journal\":{\"name\":\"MetalMat\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MetalMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/metm.70001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MetalMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/metm.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数据的不断积累,机器学习在材料科学中发挥着越来越重要的作用,特别是在预测材料成分和开发新的软磁材料合金体系方面显示出显着的优势。但目前的研究主要集中在成分优化上,往往忽略了结构和基本物性参数的影响。在这个问题上,我们讨论了机器学习建模中的模型选择,遇到的问题,以及以组合为中心的方法的局限性。通过从其他材料领域的研究中获得的见解,强调将机器学习与其他计算方法(如第一性原理计算和相图计算)相结合可以显著增强机器学习的预测能力。我们分析了这些人工智能增强的案例,并强调了它们如何有可能导致软磁材料的进一步突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Review of Artificial Intelligence-Driven Innovations in Soft Magnetic Materials Optimization: Current Trends and Future Horizons

A Review of Artificial Intelligence-Driven Innovations in Soft Magnetic Materials Optimization: Current Trends and Future Horizons

With the continuous accumulation of data, machine learning is playing an increasingly important role in materials science, especially demonstrating significant advantages in predicting material compositions and developing new alloy systems for soft magnetic materials. However, currently, it mainly focuses on composition optimization while often neglecting the impact of structure and fundamental physical parameters. On this matter, we have discussed model selection in machine learning modeling, the issues encountered, and the limitations of the composition-focused approach. Through insights gained from research in other material fields, it is highlighted that integrating machine learning with other computational methods such as first-principles calculations and phase diagram computations can significantly enhance the predictive capabilities of machine learning. We analyzed these AI-enhanced cases and highlighted how they have the potential to lead to further breakthroughs in soft magnetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信