Dong Yan, Yuanwei Fu, Jie Mei, Junhong Wang, Ayijiang Jiamaliding, Ying Liu, Zanmei Zhao, Qingbian Ma
{"title":"合成LXR激动剂GW3965通过调节PI3K/Akt和NF-κB信号通路减轻光气诱导的急性肺损伤","authors":"Dong Yan, Yuanwei Fu, Jie Mei, Junhong Wang, Ayijiang Jiamaliding, Ying Liu, Zanmei Zhao, Qingbian Ma","doi":"10.1111/bcpt.70045","DOIUrl":null,"url":null,"abstract":"<p>Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70045","citationCount":"0","resultStr":"{\"title\":\"The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways\",\"authors\":\"Dong Yan, Yuanwei Fu, Jie Mei, Junhong Wang, Ayijiang Jiamaliding, Ying Liu, Zanmei Zhao, Qingbian Ma\",\"doi\":\"10.1111/bcpt.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.</p>\",\"PeriodicalId\":8733,\"journal\":{\"name\":\"Basic & Clinical Pharmacology & Toxicology\",\"volume\":\"136 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic & Clinical Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways
Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.
期刊介绍:
Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.