合成LXR激动剂GW3965通过调节PI3K/Akt和NF-κB信号通路减轻光气诱导的急性肺损伤

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Dong Yan, Yuanwei Fu, Jie Mei, Junhong Wang, Ayijiang Jiamaliding, Ying Liu, Zanmei Zhao, Qingbian Ma
{"title":"合成LXR激动剂GW3965通过调节PI3K/Akt和NF-κB信号通路减轻光气诱导的急性肺损伤","authors":"Dong Yan,&nbsp;Yuanwei Fu,&nbsp;Jie Mei,&nbsp;Junhong Wang,&nbsp;Ayijiang Jiamaliding,&nbsp;Ying Liu,&nbsp;Zanmei Zhao,&nbsp;Qingbian Ma","doi":"10.1111/bcpt.70045","DOIUrl":null,"url":null,"abstract":"<p>Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70045","citationCount":"0","resultStr":"{\"title\":\"The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways\",\"authors\":\"Dong Yan,&nbsp;Yuanwei Fu,&nbsp;Jie Mei,&nbsp;Junhong Wang,&nbsp;Ayijiang Jiamaliding,&nbsp;Ying Liu,&nbsp;Zanmei Zhao,&nbsp;Qingbian Ma\",\"doi\":\"10.1111/bcpt.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.</p>\",\"PeriodicalId\":8733,\"journal\":{\"name\":\"Basic & Clinical Pharmacology & Toxicology\",\"volume\":\"136 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic & Clinical Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

大规模工业生产中使用的光气具有剧毒和刺激性。意外接触可导致不同程度的伤害,严重者可能导致急性肺损伤或急性呼吸窘迫综合征,死亡率可达40%-50%。光气的间接损伤(炎症和氧化应激)被认为是光气诱导的急性肺损伤(P-ALI)的重要因素。肝脏X受体α (LXRα)的表达在炎症期间显著降低。LXRs最初被发现在肝脏中高表达,而LXRs在免疫细胞和血管内皮细胞中表达,在抗炎和抗氧化反应中发挥重要作用。LXRα可能对P-ALI患者有肺保护作用。然而,证实这种联系的证据仍然缺乏。本研究将大鼠分为6组,探讨LXRα在P-ALI中的潜在作用。本研究发现GW3965有效激活LXRα,上调其表达,下调促炎细胞因子水平,抑制丙二醛活性,增强超氧化物歧化酶活性,抑制细胞凋亡,改善P-ALI的病理过程,最终对P-ALI起到肺保护作用。进一步证实LXRα的肺保护作用可能与PI3K/Akt和NF-kB信号通路有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways

The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways

Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%–50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信