一种用于水质监测的集成传感器阵列

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hooman Abolfathi, Alireza Nikfarjam, Bahareh Abbaspour
{"title":"一种用于水质监测的集成传感器阵列","authors":"Hooman Abolfathi,&nbsp;Alireza Nikfarjam,&nbsp;Bahareh Abbaspour","doi":"10.1049/smt2.70013","DOIUrl":null,"url":null,"abstract":"<p>Four important quantities in water quality monitoring are temperature, specific electrical conductivity (EC), total dissolved solids (TDS), and pH. In this paper, three sensors for precisely detecting these parameters were designed and fabricated in one structure. Spiral electrodes were made as temperature sensors and circular toothed electrodes were made as EC sensors. The pH sensor comprises two electrodes: the reference electrode (Ag/AgCl) and the working electrode (carbon black/highly porous polyaniline). The response time of the temperature sensor is 13.2 s, and the stability of the sensor is −0.031<span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <mi>Ω</mi>\n <msup>\n <mspace></mspace>\n <mo>∘</mo>\n </msup>\n <msup>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\;\\Omega \\;^\\circ {{\\mathrm{C}}^{ - 1}}$</annotation>\n </semantics></math>, and the sensitivity of the sensor is 0.003 <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>R</mi>\n <mspace></mspace>\n <msup>\n <mi>R</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msup>\n <mspace></mspace>\n <mo>∘</mo>\n </msup>\n <msup>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Delta {\\mathrm{R}}\\;{{\\mathrm{R}}^{ - 1}}\\; ^\\circ {{\\mathrm{C}}^{ - 1}}$</annotation>\n </semantics></math>. The response time of the pH sensor was reported as 136.2 <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\mathrm{s}}$</annotation>\n </semantics></math> and the sensor's sensitivity was 8.8 <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>mV</mi>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n <msup>\n <mi>H</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathrm{mV\\;p}}{{\\mathrm{H}}^{ - 1}}$</annotation>\n </semantics></math> in the pH range of 4 to 10. Also, the best excitation frequency of 30 kHz and the best reference resistance of 1 <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>${\\mathrm{k}}\\Omega $</annotation>\n </semantics></math> were measured in the range of 100 to 2000<span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <mrow>\n <mi>μ</mi>\n <mi>S</mi>\n </mrow>\n <mspace></mspace>\n <mi>c</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\;{\\mathrm{\\mu S}}\\;{\\mathrm{c}}{{\\mathrm{m}}^{ - 1}}$</annotation>\n </semantics></math> and the sensitivity of the EC sensor is <span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\;{10^{ - 3}}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>cm</mi>\n <mspace></mspace>\n <mi>μ</mi>\n </mrow>\n <msup>\n <mi>S</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathrm{cm\\;\\mu }}{{\\mathrm{S}}^{ - 1}}$</annotation>\n </semantics></math>. TDS was also calculated from the specific electrical conductivity using the conversion factor of 0.66 <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>mg</mi>\n <mspace></mspace>\n <mspace></mspace>\n <mi>cm</mi>\n <mspace></mspace>\n </mrow>\n <msup>\n <mi>L</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mspace></mspace>\n <mi>μ</mi>\n </mrow>\n <msup>\n <mi>S</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathrm{mg\\;\\;cm\\;}}{{\\mathrm{L}}^{ - 1}}{\\mathrm{\\;\\mu }}{{\\mathrm{S}}^{ - 1}}$</annotation>\n </semantics></math>. Considering the electrical output of all sensors, a circuit was designed and built to receive their information. Operational amplifiers with different functions were used to create the reading circuit.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70013","citationCount":"0","resultStr":"{\"title\":\"An Integrated Sensor Array for Water Quality Monitoring\",\"authors\":\"Hooman Abolfathi,&nbsp;Alireza Nikfarjam,&nbsp;Bahareh Abbaspour\",\"doi\":\"10.1049/smt2.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Four important quantities in water quality monitoring are temperature, specific electrical conductivity (EC), total dissolved solids (TDS), and pH. In this paper, three sensors for precisely detecting these parameters were designed and fabricated in one structure. Spiral electrodes were made as temperature sensors and circular toothed electrodes were made as EC sensors. The pH sensor comprises two electrodes: the reference electrode (Ag/AgCl) and the working electrode (carbon black/highly porous polyaniline). The response time of the temperature sensor is 13.2 s, and the stability of the sensor is −0.031<span></span><math>\\n <semantics>\\n <mrow>\\n <mspace></mspace>\\n <mi>Ω</mi>\\n <msup>\\n <mspace></mspace>\\n <mo>∘</mo>\\n </msup>\\n <msup>\\n <mi>C</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\;\\\\Omega \\\\;^\\\\circ {{\\\\mathrm{C}}^{ - 1}}$</annotation>\\n </semantics></math>, and the sensitivity of the sensor is 0.003 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>R</mi>\\n <mspace></mspace>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mspace></mspace>\\n <mo>∘</mo>\\n </msup>\\n <msup>\\n <mi>C</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Delta {\\\\mathrm{R}}\\\\;{{\\\\mathrm{R}}^{ - 1}}\\\\; ^\\\\circ {{\\\\mathrm{C}}^{ - 1}}$</annotation>\\n </semantics></math>. The response time of the pH sensor was reported as 136.2 <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\mathrm{s}}$</annotation>\\n </semantics></math> and the sensor's sensitivity was 8.8 <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>mV</mi>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mrow>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{mV\\\\;p}}{{\\\\mathrm{H}}^{ - 1}}$</annotation>\\n </semantics></math> in the pH range of 4 to 10. Also, the best excitation frequency of 30 kHz and the best reference resistance of 1 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>Ω</mi>\\n </mrow>\\n <annotation>${\\\\mathrm{k}}\\\\Omega $</annotation>\\n </semantics></math> were measured in the range of 100 to 2000<span></span><math>\\n <semantics>\\n <mrow>\\n <mspace></mspace>\\n <mrow>\\n <mi>μ</mi>\\n <mi>S</mi>\\n </mrow>\\n <mspace></mspace>\\n <mi>c</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\;{\\\\mathrm{\\\\mu S}}\\\\;{\\\\mathrm{c}}{{\\\\mathrm{m}}^{ - 1}}$</annotation>\\n </semantics></math> and the sensitivity of the EC sensor is <span></span><math>\\n <semantics>\\n <mrow>\\n <mspace></mspace>\\n <msup>\\n <mn>10</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\;{10^{ - 3}}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>cm</mi>\\n <mspace></mspace>\\n <mi>μ</mi>\\n </mrow>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{cm\\\\;\\\\mu }}{{\\\\mathrm{S}}^{ - 1}}$</annotation>\\n </semantics></math>. TDS was also calculated from the specific electrical conductivity using the conversion factor of 0.66 <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>mg</mi>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mi>cm</mi>\\n <mspace></mspace>\\n </mrow>\\n <msup>\\n <mi>L</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mspace></mspace>\\n <mi>μ</mi>\\n </mrow>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{mg\\\\;\\\\;cm\\\\;}}{{\\\\mathrm{L}}^{ - 1}}{\\\\mathrm{\\\\;\\\\mu }}{{\\\\mathrm{S}}^{ - 1}}$</annotation>\\n </semantics></math>. Considering the electrical output of all sensors, a circuit was designed and built to receive their information. Operational amplifiers with different functions were used to create the reading circuit.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.70013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.70013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

温度、比电导率(EC)、总溶解固形物(TDS)和ph是水质监测的四个重要参数。本文设计并制作了三个用于精确检测这些参数的传感器。采用螺旋电极作为温度传感器,圆齿电极作为EC传感器。pH传感器包括两个电极:参比电极(Ag/AgCl)和工作电极(炭黑/高多孔聚苯胺)。温度传感器的响应时间为13.2 s;传感器的稳定性为−0.031 Ω°C−1 $\;\Omega \;^\circ {{\mathrm{C}}^{ - 1}}$,传感器的灵敏度为0.003 Δ R R−1°C−1 $\Delta {\mathrm{R}}\;{{\mathrm{R}}^{ - 1}}\; ^\circ {{\mathrm{C}}^{ - 1}}$。pH传感器的响应时间为136.2 s ${\mathrm{s}}$,灵敏度为8.8 mV pH−1${\mathrm{mV\;p}}{{\mathrm{H}}^{ - 1}}$, pH值为4 ~ 10。还有,在100 ~ 2000 μ S cm范围内测得最佳激励频率为30 kHz,最佳参考电阻为1 k Ω ${\mathrm{k}}\Omega $−1 $\;{\mathrm{\mu S}}\;{\mathrm{c}}{{\mathrm{m}}^{ - 1}}$,传感器灵敏度为10−3$\;{10^{ - 3}}$ cm μ S−1 ${\mathrm{cm\;\mu }}{{\mathrm{S}}^{ - 1}}$。TDS也由比电导率计算,转换系数为0.66 mg cm L−1μ S−1 ${\mathrm{mg\;\;cm\;}}{{\mathrm{L}}^{ - 1}}{\mathrm{\;\mu }}{{\mathrm{S}}^{ - 1}}$。考虑到所有传感器的电输出,设计并构建了一个电路来接收它们的信息。采用不同功能的运算放大器构成读取电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Integrated Sensor Array for Water Quality Monitoring

An Integrated Sensor Array for Water Quality Monitoring

Four important quantities in water quality monitoring are temperature, specific electrical conductivity (EC), total dissolved solids (TDS), and pH. In this paper, three sensors for precisely detecting these parameters were designed and fabricated in one structure. Spiral electrodes were made as temperature sensors and circular toothed electrodes were made as EC sensors. The pH sensor comprises two electrodes: the reference electrode (Ag/AgCl) and the working electrode (carbon black/highly porous polyaniline). The response time of the temperature sensor is 13.2 s, and the stability of the sensor is −0.031 Ω C 1 $\;\Omega \;^\circ {{\mathrm{C}}^{ - 1}}$ , and the sensitivity of the sensor is 0.003 Δ R R 1 C 1 $\Delta {\mathrm{R}}\;{{\mathrm{R}}^{ - 1}}\; ^\circ {{\mathrm{C}}^{ - 1}}$ . The response time of the pH sensor was reported as 136.2 s ${\mathrm{s}}$ and the sensor's sensitivity was 8.8  mV p H 1 ${\mathrm{mV\;p}}{{\mathrm{H}}^{ - 1}}$ in the pH range of 4 to 10. Also, the best excitation frequency of 30 kHz and the best reference resistance of 1 k Ω ${\mathrm{k}}\Omega $ were measured in the range of 100 to 2000 μ S c m 1 $\;{\mathrm{\mu S}}\;{\mathrm{c}}{{\mathrm{m}}^{ - 1}}$ and the sensitivity of the EC sensor is 10 3 $\;{10^{ - 3}}$ cm μ S 1 ${\mathrm{cm\;\mu }}{{\mathrm{S}}^{ - 1}}$ . TDS was also calculated from the specific electrical conductivity using the conversion factor of 0.66 mg cm L 1 μ S 1 ${\mathrm{mg\;\;cm\;}}{{\mathrm{L}}^{ - 1}}{\mathrm{\;\mu }}{{\mathrm{S}}^{ - 1}}$ . Considering the electrical output of all sensors, a circuit was designed and built to receive their information. Operational amplifiers with different functions were used to create the reading circuit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Science Measurement & Technology
Iet Science Measurement & Technology 工程技术-工程:电子与电气
CiteScore
4.30
自引率
7.10%
发文量
41
审稿时长
7.5 months
期刊介绍: IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques. The major themes of the journal are: - electromagnetism including electromagnetic theory, computational electromagnetics and EMC - properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale - measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信