苯类烃广义Mycielskian图和石墨烯曲线回归模型的调和算术指数

IF 0.9 Q3 MATHEMATICS, APPLIED
Pooja Danushri Namidass, Shobana Loganathan
{"title":"苯类烃广义Mycielskian图和石墨烯曲线回归模型的调和算术指数","authors":"Pooja Danushri Namidass,&nbsp;Shobana Loganathan","doi":"10.1155/cmm4/6402353","DOIUrl":null,"url":null,"abstract":"<p>The generalized Mycielskian graphs are known for their advantageous properties employed in interconnection networks in parallel computing to provide efficient and optimized network solutions. This paper focuses on investigating the bounds and computation of the harmonic–arithmetic index of the generalized Mycielskian graph of path graph, cycle graph, complete graph, and circulant graph. Furthermore, exploring the harmonic–arithmetic index of graphene provides insights into its structural properties, aiding in material design, predictive modeling, and understanding its behavior in various applications. Additionally, the study delves into analyzing the harmonic–arithmetic index of the curvilinear regression model concerning elucidating specific properties of benzenoid hydrocarbons, offering insights into their structural characteristics.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/6402353","citationCount":"0","resultStr":"{\"title\":\"Harmonic–Arithmetic Index for the Generalized Mycielskian Graphs and Graphenes With Curvilinear Regression Models of Benzenoid Hydrocarbons\",\"authors\":\"Pooja Danushri Namidass,&nbsp;Shobana Loganathan\",\"doi\":\"10.1155/cmm4/6402353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The generalized Mycielskian graphs are known for their advantageous properties employed in interconnection networks in parallel computing to provide efficient and optimized network solutions. This paper focuses on investigating the bounds and computation of the harmonic–arithmetic index of the generalized Mycielskian graph of path graph, cycle graph, complete graph, and circulant graph. Furthermore, exploring the harmonic–arithmetic index of graphene provides insights into its structural properties, aiding in material design, predictive modeling, and understanding its behavior in various applications. Additionally, the study delves into analyzing the harmonic–arithmetic index of the curvilinear regression model concerning elucidating specific properties of benzenoid hydrocarbons, offering insights into their structural characteristics.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/6402353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/6402353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/6402353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义Mycielskian图以其在并行计算互连网络中提供高效和优化的网络解决方案的优势而闻名。本文重点研究了路径图、循环图、完全图和循环图的广义Mycielskian图的调和算术指标的界和计算。此外,探索石墨烯的谐波算术指数提供了对其结构特性的见解,有助于材料设计,预测建模,并理解其在各种应用中的行为。此外,研究还深入分析了曲线回归模型的谐波算术指数,以阐明苯类烃的特定性质,为其结构特征提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonic–Arithmetic Index for the Generalized Mycielskian Graphs and Graphenes With Curvilinear Regression Models of Benzenoid Hydrocarbons

Harmonic–Arithmetic Index for the Generalized Mycielskian Graphs and Graphenes With Curvilinear Regression Models of Benzenoid Hydrocarbons

The generalized Mycielskian graphs are known for their advantageous properties employed in interconnection networks in parallel computing to provide efficient and optimized network solutions. This paper focuses on investigating the bounds and computation of the harmonic–arithmetic index of the generalized Mycielskian graph of path graph, cycle graph, complete graph, and circulant graph. Furthermore, exploring the harmonic–arithmetic index of graphene provides insights into its structural properties, aiding in material design, predictive modeling, and understanding its behavior in various applications. Additionally, the study delves into analyzing the harmonic–arithmetic index of the curvilinear regression model concerning elucidating specific properties of benzenoid hydrocarbons, offering insights into their structural characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信