{"title":"用分数算子定义的几类解析函数的系数界和fekete - szegov问题","authors":"Eszter Gavriş","doi":"10.1007/s13370-025-01313-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper coefficient bounds and Fekete-Szegő inequalities are obtained for the classes of analytic functions <span>\\({{\\mathcal {S}}}_\\lambda ^{\\nu , n}(\\eta , [\\phi ]), {{\\mathcal {C}}}_\\lambda ^{\\nu , n}(\\eta , [\\phi ], [\\psi ])\\)</span>, <span>\\({{\\mathcal {R}}}_\\lambda ^{\\nu , n}(\\eta , \\gamma , [\\phi ], [\\psi ])\\)</span> introduced in a recent work. Some of the main results generalize previously known results.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01313-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Coefficient bounds and Fekete-Szegő problem for some classes of analytic functions defined by using a fractional operator\",\"authors\":\"Eszter Gavriş\",\"doi\":\"10.1007/s13370-025-01313-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper coefficient bounds and Fekete-Szegő inequalities are obtained for the classes of analytic functions <span>\\\\({{\\\\mathcal {S}}}_\\\\lambda ^{\\\\nu , n}(\\\\eta , [\\\\phi ]), {{\\\\mathcal {C}}}_\\\\lambda ^{\\\\nu , n}(\\\\eta , [\\\\phi ], [\\\\psi ])\\\\)</span>, <span>\\\\({{\\\\mathcal {R}}}_\\\\lambda ^{\\\\nu , n}(\\\\eta , \\\\gamma , [\\\\phi ], [\\\\psi ])\\\\)</span> introduced in a recent work. Some of the main results generalize previously known results.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01313-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01313-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01313-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coefficient bounds and Fekete-Szegő problem for some classes of analytic functions defined by using a fractional operator
In this paper coefficient bounds and Fekete-Szegő inequalities are obtained for the classes of analytic functions \({{\mathcal {S}}}_\lambda ^{\nu , n}(\eta , [\phi ]), {{\mathcal {C}}}_\lambda ^{\nu , n}(\eta , [\phi ], [\psi ])\), \({{\mathcal {R}}}_\lambda ^{\nu , n}(\eta , \gamma , [\phi ], [\psi ])\) introduced in a recent work. Some of the main results generalize previously known results.