{"title":"整合BIM与精益原则增强决策:可持续建设项目保温材料选择优化","authors":"Karim El Mounla, Djaoued Beladjine, Karim Beddiar","doi":"10.1186/s42162-025-00518-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the construction sector’s growing need for improved decision-making and reduced carbon emissions by integrating Lean principles into Building Information Modeling (BIM). A decision-support tool was developed using Python and RStudio to enhance stakeholder efficiency, reduce errors, and streamline communication. The tool combines Set-Based Design, Choosing By Advantages, and Big Room methods with Industry Foundation Classes (IFC) data to automatically generate and evaluate insulation options based on multi-criteria analysis. To test its adaptability and effectiveness, the tool was applied to two real-world case studies in different regions of France with distinct climatic conditions and project objectives. The first case study involved a mixed-use building in Rennes, where the objective was to enhance energy performance. The selected insulation material reduced heating needs by 13%, annual CO<sub>2</sub> emissions by 14%, and insulation costs by 45% over a 50-year period. The second case study focused on a residential building in Orléans, where the goal was to improve both energy efficiency and environmental impact. The tool achieved a 6% reduction in primary energy consumption, a 40% decrease in carbon footprint per <span>\\(m^2\\)</span> and a 6% reduction in annual CO<sub>2</sub> emissions. The tool’s ability to adapt to different building types and climatic conditions confirms its accuracy and reliability in optimizing energy performance and reducing environmental impact and project costs. This research provides a scalable tool for enhancing decision-making efficiency and improving building energy performance, environmental impact, and cost-effectiveness in construction projects.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00518-4","citationCount":"0","resultStr":"{\"title\":\"Integrating BIM with Lean Principles for Enhanced Decision-making: Optimizing Insulation Material Selection in Sustainable Construction Project\",\"authors\":\"Karim El Mounla, Djaoued Beladjine, Karim Beddiar\",\"doi\":\"10.1186/s42162-025-00518-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses the construction sector’s growing need for improved decision-making and reduced carbon emissions by integrating Lean principles into Building Information Modeling (BIM). A decision-support tool was developed using Python and RStudio to enhance stakeholder efficiency, reduce errors, and streamline communication. The tool combines Set-Based Design, Choosing By Advantages, and Big Room methods with Industry Foundation Classes (IFC) data to automatically generate and evaluate insulation options based on multi-criteria analysis. To test its adaptability and effectiveness, the tool was applied to two real-world case studies in different regions of France with distinct climatic conditions and project objectives. The first case study involved a mixed-use building in Rennes, where the objective was to enhance energy performance. The selected insulation material reduced heating needs by 13%, annual CO<sub>2</sub> emissions by 14%, and insulation costs by 45% over a 50-year period. The second case study focused on a residential building in Orléans, where the goal was to improve both energy efficiency and environmental impact. The tool achieved a 6% reduction in primary energy consumption, a 40% decrease in carbon footprint per <span>\\\\(m^2\\\\)</span> and a 6% reduction in annual CO<sub>2</sub> emissions. The tool’s ability to adapt to different building types and climatic conditions confirms its accuracy and reliability in optimizing energy performance and reducing environmental impact and project costs. This research provides a scalable tool for enhancing decision-making efficiency and improving building energy performance, environmental impact, and cost-effectiveness in construction projects.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00518-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00518-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00518-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过将精益原则整合到建筑信息模型(BIM)中,解决了建筑行业对改进决策和减少碳排放的日益增长的需求。使用Python和RStudio开发了一个决策支持工具,以提高利益相关者的效率,减少错误,并简化沟通。该工具将基于集的设计、优势选择和大房间方法与行业基础类(IFC)数据相结合,根据多标准分析自动生成和评估隔热选项。为了测试其适应性和有效性,该工具被应用于法国不同地区的两个现实案例研究,这些地区具有不同的气候条件和项目目标。第一个案例研究涉及雷恩的一座混合用途建筑,其目标是提高能源性能。选用的保温材料减少了13%的供热需求%, annual CO2 emissions by 14%, and insulation costs by 45% over a 50-year period. The second case study focused on a residential building in Orléans, where the goal was to improve both energy efficiency and environmental impact. The tool achieved a 6% reduction in primary energy consumption, a 40% decrease in carbon footprint per \(m^2\) and a 6% reduction in annual CO2 emissions. The tool’s ability to adapt to different building types and climatic conditions confirms its accuracy and reliability in optimizing energy performance and reducing environmental impact and project costs. This research provides a scalable tool for enhancing decision-making efficiency and improving building energy performance, environmental impact, and cost-effectiveness in construction projects.
Integrating BIM with Lean Principles for Enhanced Decision-making: Optimizing Insulation Material Selection in Sustainable Construction Project
This study addresses the construction sector’s growing need for improved decision-making and reduced carbon emissions by integrating Lean principles into Building Information Modeling (BIM). A decision-support tool was developed using Python and RStudio to enhance stakeholder efficiency, reduce errors, and streamline communication. The tool combines Set-Based Design, Choosing By Advantages, and Big Room methods with Industry Foundation Classes (IFC) data to automatically generate and evaluate insulation options based on multi-criteria analysis. To test its adaptability and effectiveness, the tool was applied to two real-world case studies in different regions of France with distinct climatic conditions and project objectives. The first case study involved a mixed-use building in Rennes, where the objective was to enhance energy performance. The selected insulation material reduced heating needs by 13%, annual CO2 emissions by 14%, and insulation costs by 45% over a 50-year period. The second case study focused on a residential building in Orléans, where the goal was to improve both energy efficiency and environmental impact. The tool achieved a 6% reduction in primary energy consumption, a 40% decrease in carbon footprint per \(m^2\) and a 6% reduction in annual CO2 emissions. The tool’s ability to adapt to different building types and climatic conditions confirms its accuracy and reliability in optimizing energy performance and reducing environmental impact and project costs. This research provides a scalable tool for enhancing decision-making efficiency and improving building energy performance, environmental impact, and cost-effectiveness in construction projects.