VFE:用于评估视频时间预测的大规模视频未来事件描述数据集

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenghang Lai, Haibo Wang
{"title":"VFE:用于评估视频时间预测的大规模视频未来事件描述数据集","authors":"Chenghang Lai,&nbsp;Haibo Wang","doi":"10.1007/s10489-025-06547-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given a video, humans can predict subsequent events in the video and generate reasonable descriptions based on the acquired information and prior knowledge. This ability requires in-depth analysis of dynamic visual information in videos and the comprehensive use of extensive world knowledge for logical reasoning and prediction. However, current visual systems have not yet reached a satisfactory level regarding similar temporal prediction capability. To evaluate this new application, we construct a dataset called VFE (Video Future Event Description), a large-scale dataset for subsequent video event prediction. The VFE dataset contains over 84K video clips, and each clip is equipped with a video and description of the premise event and a predicted description of the subsequent events. To evaluate video temporal prediction, we propose a task, video future event prediction, to generate possible future event descriptions for subsequent unseen video clips based on the premise video. In this paper, we also propose a baseline model for evaluating the VFE dataset. The experimental results indicate the challenge of this task, and the ability of the visual system in complex video temporal prediction needs to be further explored. The dataset and code are available at https://github.com/keyancaigou/VFE.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VFE: A large-scale video future event description dataset for evaluating video temporal prediction\",\"authors\":\"Chenghang Lai,&nbsp;Haibo Wang\",\"doi\":\"10.1007/s10489-025-06547-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a video, humans can predict subsequent events in the video and generate reasonable descriptions based on the acquired information and prior knowledge. This ability requires in-depth analysis of dynamic visual information in videos and the comprehensive use of extensive world knowledge for logical reasoning and prediction. However, current visual systems have not yet reached a satisfactory level regarding similar temporal prediction capability. To evaluate this new application, we construct a dataset called VFE (Video Future Event Description), a large-scale dataset for subsequent video event prediction. The VFE dataset contains over 84K video clips, and each clip is equipped with a video and description of the premise event and a predicted description of the subsequent events. To evaluate video temporal prediction, we propose a task, video future event prediction, to generate possible future event descriptions for subsequent unseen video clips based on the premise video. In this paper, we also propose a baseline model for evaluating the VFE dataset. The experimental results indicate the challenge of this task, and the ability of the visual system in complex video temporal prediction needs to be further explored. The dataset and code are available at https://github.com/keyancaigou/VFE.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06547-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06547-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

给定一个视频,人类可以预测视频中的后续事件,并根据获得的信息和先验知识生成合理的描述。这种能力需要深入分析视频中的动态视觉信息,并综合运用广泛的世界知识进行逻辑推理和预测。然而,目前的视觉系统在类似的时间预测能力方面还没有达到令人满意的水平。为了评估这一新应用,我们构建了一个名为VFE(视频未来事件描述)的数据集,这是一个用于后续视频事件预测的大规模数据集。VFE数据集包含超过84K的视频片段,每个片段都配备了前提事件的视频和描述以及对后续事件的预测描述。为了评估视频时间预测,我们提出了一个任务,视频未来事件预测,基于前提视频为后续未见的视频片段生成可能的未来事件描述。在本文中,我们还提出了一个基线模型来评估VFE数据集。实验结果表明,该任务具有挑战性,视觉系统在复杂视频时间预测中的能力有待进一步探索。数据集和代码可在https://github.com/keyancaigou/VFE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VFE: A large-scale video future event description dataset for evaluating video temporal prediction

Given a video, humans can predict subsequent events in the video and generate reasonable descriptions based on the acquired information and prior knowledge. This ability requires in-depth analysis of dynamic visual information in videos and the comprehensive use of extensive world knowledge for logical reasoning and prediction. However, current visual systems have not yet reached a satisfactory level regarding similar temporal prediction capability. To evaluate this new application, we construct a dataset called VFE (Video Future Event Description), a large-scale dataset for subsequent video event prediction. The VFE dataset contains over 84K video clips, and each clip is equipped with a video and description of the premise event and a predicted description of the subsequent events. To evaluate video temporal prediction, we propose a task, video future event prediction, to generate possible future event descriptions for subsequent unseen video clips based on the premise video. In this paper, we also propose a baseline model for evaluating the VFE dataset. The experimental results indicate the challenge of this task, and the ability of the visual system in complex video temporal prediction needs to be further explored. The dataset and code are available at https://github.com/keyancaigou/VFE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信