DIP-MoG: Non-i.i.d。基于高斯噪声模型和深度图像先验的地震噪声抑制

Yuqing Wang;Jiangjun Peng;Bangyu Wu;Bo Li
{"title":"DIP-MoG: Non-i.i.d。基于高斯噪声模型和深度图像先验的地震噪声抑制","authors":"Yuqing Wang;Jiangjun Peng;Bangyu Wu;Bo Li","doi":"10.1109/LGRS.2025.3560978","DOIUrl":null,"url":null,"abstract":"Seismic data denoising is essential for subsequent inversion and interpretation tasks. However, most existing methods rely on loss functions, which assume that seismic noise follows an independent and identically distributed (i.i.d.) Gaussian distribution, which does not align with the characteristics of actual seismic noise. In this letter, we first analyze the principle of the <inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>-norm loss function in suppressing i.i.d. Gaussian noise from the maximum a posteriori (MAP) perspective and then introduce the Mixture of Gaussians (MoGs) model to handle non-i.i.d. noise suppression. In addition, we optimize the MoG model using the expectation-maximization (EM) algorithm for improved performance. We propose a novel approach, DIP-MoG, which integrates the deep image prior (DIP) with the MoG model for enhanced denoising. To validate the performance of DIP-MoG, we conduct experiments on two synthetic datasets contaminated with an MoG noise and field noise, as well as a field seismic dataset. The results from both synthetic and field data demonstrate the superior denoising performance of DIP-MoG.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIP-MoG: Non-i.i.d. Seismic Noise Attenuation Using Mixture of Gaussians Noise Model and Deep Image Prior\",\"authors\":\"Yuqing Wang;Jiangjun Peng;Bangyu Wu;Bo Li\",\"doi\":\"10.1109/LGRS.2025.3560978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic data denoising is essential for subsequent inversion and interpretation tasks. However, most existing methods rely on loss functions, which assume that seismic noise follows an independent and identically distributed (i.i.d.) Gaussian distribution, which does not align with the characteristics of actual seismic noise. In this letter, we first analyze the principle of the <inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>-norm loss function in suppressing i.i.d. Gaussian noise from the maximum a posteriori (MAP) perspective and then introduce the Mixture of Gaussians (MoGs) model to handle non-i.i.d. noise suppression. In addition, we optimize the MoG model using the expectation-maximization (EM) algorithm for improved performance. We propose a novel approach, DIP-MoG, which integrates the deep image prior (DIP) with the MoG model for enhanced denoising. To validate the performance of DIP-MoG, we conduct experiments on two synthetic datasets contaminated with an MoG noise and field noise, as well as a field seismic dataset. The results from both synthetic and field data demonstrate the superior denoising performance of DIP-MoG.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965742/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10965742/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震数据去噪对后续的反演和解释工作至关重要。然而,大多数现有方法依赖于损失函数,这些方法假设地震噪声遵循独立的同分布(i.i.d)。高斯分布,与实际地震噪声的特征不一致。在这篇文章中,我们首先从最大后验(MAP)的角度分析了$L_{2}$范数损失函数抑制i.i.d高斯噪声的原理,然后引入了混合高斯(MoGs)模型来处理非i.i.d。噪声抑制。此外,我们使用期望最大化(EM)算法优化MoG模型以提高性能。我们提出了一种新的方法DIP-MoG,它将深度图像先验(DIP)与MoG模型相结合,以增强去噪。为了验证DIP-MoG的性能,我们在两个受MoG噪声和现场噪声污染的合成数据集以及现场地震数据集上进行了实验。综合和现场数据均表明DIP-MoG具有良好的去噪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIP-MoG: Non-i.i.d. Seismic Noise Attenuation Using Mixture of Gaussians Noise Model and Deep Image Prior
Seismic data denoising is essential for subsequent inversion and interpretation tasks. However, most existing methods rely on loss functions, which assume that seismic noise follows an independent and identically distributed (i.i.d.) Gaussian distribution, which does not align with the characteristics of actual seismic noise. In this letter, we first analyze the principle of the $L_{2}$ -norm loss function in suppressing i.i.d. Gaussian noise from the maximum a posteriori (MAP) perspective and then introduce the Mixture of Gaussians (MoGs) model to handle non-i.i.d. noise suppression. In addition, we optimize the MoG model using the expectation-maximization (EM) algorithm for improved performance. We propose a novel approach, DIP-MoG, which integrates the deep image prior (DIP) with the MoG model for enhanced denoising. To validate the performance of DIP-MoG, we conduct experiments on two synthetic datasets contaminated with an MoG noise and field noise, as well as a field seismic dataset. The results from both synthetic and field data demonstrate the superior denoising performance of DIP-MoG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信