Xuan Zheng;Yihang Lu;Rong Wang;Feiping Nie;Xuelong Li
{"title":"基于结构化图的集成聚类","authors":"Xuan Zheng;Yihang Lu;Rong Wang;Feiping Nie;Xuelong Li","doi":"10.1109/TKDE.2025.3546502","DOIUrl":null,"url":null,"abstract":"Ensemble clustering can utilize the complementary information among multiple base clusterings, and obtain a clustering model with better performance and more robustness. Despite its great success, there are still two problems in the current ensemble clustering methods. First, most ensemble clustering methods often treat all base clusterings equally. Second, the final ensemble clustering result often relies on <inline-formula><tex-math>$k$</tex-math></inline-formula>-means or other discretization procedures to uncover the clustering indicators, thus obtaining unsatisfactory results. To address these issues, we proposed a novel ensemble clustering method based on structured graph learning, which can directly extract clustering indicators from the obtained similarity matrix. Moreover, our methods take sufficient consideration of correlation among the base clusterings and can effectively reduce the redundancy among them. Extensive experiments on artificial and real-world datasets demonstrate the efficiency and effectiveness of our methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3728-3738"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured Graph-Based Ensemble Clustering\",\"authors\":\"Xuan Zheng;Yihang Lu;Rong Wang;Feiping Nie;Xuelong Li\",\"doi\":\"10.1109/TKDE.2025.3546502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble clustering can utilize the complementary information among multiple base clusterings, and obtain a clustering model with better performance and more robustness. Despite its great success, there are still two problems in the current ensemble clustering methods. First, most ensemble clustering methods often treat all base clusterings equally. Second, the final ensemble clustering result often relies on <inline-formula><tex-math>$k$</tex-math></inline-formula>-means or other discretization procedures to uncover the clustering indicators, thus obtaining unsatisfactory results. To address these issues, we proposed a novel ensemble clustering method based on structured graph learning, which can directly extract clustering indicators from the obtained similarity matrix. Moreover, our methods take sufficient consideration of correlation among the base clusterings and can effectively reduce the redundancy among them. Extensive experiments on artificial and real-world datasets demonstrate the efficiency and effectiveness of our methods.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 6\",\"pages\":\"3728-3738\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10916604/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916604/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ensemble clustering can utilize the complementary information among multiple base clusterings, and obtain a clustering model with better performance and more robustness. Despite its great success, there are still two problems in the current ensemble clustering methods. First, most ensemble clustering methods often treat all base clusterings equally. Second, the final ensemble clustering result often relies on $k$-means or other discretization procedures to uncover the clustering indicators, thus obtaining unsatisfactory results. To address these issues, we proposed a novel ensemble clustering method based on structured graph learning, which can directly extract clustering indicators from the obtained similarity matrix. Moreover, our methods take sufficient consideration of correlation among the base clusterings and can effectively reduce the redundancy among them. Extensive experiments on artificial and real-world datasets demonstrate the efficiency and effectiveness of our methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.