Hongming Tan;Shaoxiong Zhan;Hai Lin;Hai-Tao Zheng;Wai Kin Chan
{"title":"面向密集检索的统一文本增强框架","authors":"Hongming Tan;Shaoxiong Zhan;Hai Lin;Hai-Tao Zheng;Wai Kin Chan","doi":"10.1109/TKDE.2025.3543203","DOIUrl":null,"url":null,"abstract":"In dense retrieval, embedding long texts into dense vectors can result in information loss, leading to inaccurate query-text matching. Additionally, low-quality texts with excessive noise or sparse key information are unlikely to align well with relevant queries. Recent studies mainly focus on improving the sentence embedding model or retrieval process. In this work, we introduce a novel text augmentation framework for dense retrieval. This framework transforms raw documents into information-dense text formats, which supplement the original texts to effectively address the aforementioned issues without modifying embedding or retrieval methodologies. Two text representations are generated via large language models (LLMs) zero-shot prompting: question-answer pairs and element-driven events. We term this approach QAEA-DR: unifying question-answer generation and event extraction in a text augmentation framework for dense retrieval. To further enhance the quality of generated texts, a scoring-based evaluation and regeneration mechanism is introduced in LLM prompting. Our QAEA-DR model has a positive impact on dense retrieval, supported by both theoretical analysis and empirical experiments.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3669-3683"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval\",\"authors\":\"Hongming Tan;Shaoxiong Zhan;Hai Lin;Hai-Tao Zheng;Wai Kin Chan\",\"doi\":\"10.1109/TKDE.2025.3543203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dense retrieval, embedding long texts into dense vectors can result in information loss, leading to inaccurate query-text matching. Additionally, low-quality texts with excessive noise or sparse key information are unlikely to align well with relevant queries. Recent studies mainly focus on improving the sentence embedding model or retrieval process. In this work, we introduce a novel text augmentation framework for dense retrieval. This framework transforms raw documents into information-dense text formats, which supplement the original texts to effectively address the aforementioned issues without modifying embedding or retrieval methodologies. Two text representations are generated via large language models (LLMs) zero-shot prompting: question-answer pairs and element-driven events. We term this approach QAEA-DR: unifying question-answer generation and event extraction in a text augmentation framework for dense retrieval. To further enhance the quality of generated texts, a scoring-based evaluation and regeneration mechanism is introduced in LLM prompting. Our QAEA-DR model has a positive impact on dense retrieval, supported by both theoretical analysis and empirical experiments.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 6\",\"pages\":\"3669-3683\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891728/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891728/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval
In dense retrieval, embedding long texts into dense vectors can result in information loss, leading to inaccurate query-text matching. Additionally, low-quality texts with excessive noise or sparse key information are unlikely to align well with relevant queries. Recent studies mainly focus on improving the sentence embedding model or retrieval process. In this work, we introduce a novel text augmentation framework for dense retrieval. This framework transforms raw documents into information-dense text formats, which supplement the original texts to effectively address the aforementioned issues without modifying embedding or retrieval methodologies. Two text representations are generated via large language models (LLMs) zero-shot prompting: question-answer pairs and element-driven events. We term this approach QAEA-DR: unifying question-answer generation and event extraction in a text augmentation framework for dense retrieval. To further enhance the quality of generated texts, a scoring-based evaluation and regeneration mechanism is introduced in LLM prompting. Our QAEA-DR model has a positive impact on dense retrieval, supported by both theoretical analysis and empirical experiments.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.