Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li
{"title":"优化相对辐射归一化:利用信任区域反射和拉普拉斯金字塔融合最小化多光谱双时间图像的残留畸变","authors":"Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li","doi":"10.1109/LGRS.2025.3562276","DOIUrl":null,"url":null,"abstract":"Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: <uri>https://github.com/ArminMoghimi/Tensor-based-keypoint-detection</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Relative Radiometric Normalization: Minimizing Residual Distortions in Multispectral Bitemporal Images Using Trust-Region Reflective and Laplacian Pyramid Fusion\",\"authors\":\"Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li\",\"doi\":\"10.1109/LGRS.2025.3562276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: <uri>https://github.com/ArminMoghimi/Tensor-based-keypoint-detection</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969805/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969805/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Relative Radiometric Normalization: Minimizing Residual Distortions in Multispectral Bitemporal Images Using Trust-Region Reflective and Laplacian Pyramid Fusion
Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: https://github.com/ArminMoghimi/Tensor-based-keypoint-detection