优化相对辐射归一化:利用信任区域反射和拉普拉斯金字塔融合最小化多光谱双时间图像的残留畸变

Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li
{"title":"优化相对辐射归一化:利用信任区域反射和拉普拉斯金字塔融合最小化多光谱双时间图像的残留畸变","authors":"Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li","doi":"10.1109/LGRS.2025.3562276","DOIUrl":null,"url":null,"abstract":"Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: <uri>https://github.com/ArminMoghimi/Tensor-based-keypoint-detection</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Relative Radiometric Normalization: Minimizing Residual Distortions in Multispectral Bitemporal Images Using Trust-Region Reflective and Laplacian Pyramid Fusion\",\"authors\":\"Armin Moghimi;Turgay Celik;Ali Mohammadzadeh;Saied Pirasteh;Jonathan Li\",\"doi\":\"10.1109/LGRS.2025.3562276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: <uri>https://github.com/ArminMoghimi/Tensor-based-keypoint-detection</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969805/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969805/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确的相对辐射归一化(RRN)对于可靠的多时相遥感图像分析至关重要。传统方法通常依赖于共配准图像对,限制了其对未配准数据的适用性。基于关键点的RRN (KRRN)放宽了这一限制,但由于归一化误差和非线性效应,仍然受到残余辐射误差的影响。本文介绍了一种改进策略,该策略利用信任区域反射(TRR)算法来优化归一化参数,并结合拉普拉斯金字塔(LP)融合实现无缝图像集成。对来自不同传感器的4对多光谱图像(例如Landsat 8和Sentinel-2、IRS和Landsat 5、Landsat 7和SPOT-5、英国- dmc2和Landsat 5)和来自同一传感器的1对多光谱图像(Sentinel-2)的评估表明,我们的方法减少了残余辐射差异,RMSE比一些知名模型降低了29%。源代码和数据集可以在GitHub上获得:https://github.com/ArminMoghimi/Tensor-based-keypoint-detection
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Relative Radiometric Normalization: Minimizing Residual Distortions in Multispectral Bitemporal Images Using Trust-Region Reflective and Laplacian Pyramid Fusion
Accurate relative radiometric normalization (RRN) is important for reliable multitemporal remote sensing image analysis. Traditional methods often depend on coregistered image pairs, limiting their applicability with unregistered data. Keypoint-based RRN (KRRN) relaxes this constraint but remains affected by residual radiometric errors due to normalization inaccuracies and nonlinear effects. This letter introduces a refinement strategy that leverages the trust-region reflective (TRR) algorithm to optimize normalization parameters, coupled with Laplacian pyramid (LP) fusion for seamless image integration. Evaluation on four multispectral image pairs from different sensors (e.g., Landsat 8 and Sentinel-2, IRS and Landsat 5, Landsat 7 and SPOT-5, and UK-DMC2 and Landsat 5) and one pair from the same sensor (Sentinel-2) showed that our method reduces residual radiometric discrepancies, achieving up to 29% lower RMSE than some well-known models. The source code and datasets are available on GitHub: https://github.com/ArminMoghimi/Tensor-based-keypoint-detection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信