{"title":"推荐用双通道多路图神经网络","authors":"Xiang Li;Chaofan Fu;Zhongying Zhao;Guangjie Zheng;Chao Huang;Yanwei Yu;Junyu Dong","doi":"10.1109/TKDE.2025.3544081","DOIUrl":null,"url":null,"abstract":"Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interactive relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant challenges: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations within behavior patterns on the target relation in recommender system scenarios. In this work, we introduce a novel recommendation framework, <bold><u>D</u></b>ual-<bold><u>C</u></b>hannel <bold><u>M</u></b>ultiplex <bold><u>G</u></b>raph <bold><u>N</u></b>eural <bold><u>N</u></b>etwork (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interactive relations, and includes a relation chain representation learner and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our DCMGNN surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06% and 12.15% on average across all datasets in terms of Recall@10 and NDCG@10 respectively. The source code of our paper is available at <uri>https://github.com/lx970414/TKDE-DCMGNN</uri>.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3327-3341"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Channel Multiplex Graph Neural Networks for Recommendation\",\"authors\":\"Xiang Li;Chaofan Fu;Zhongying Zhao;Guangjie Zheng;Chao Huang;Yanwei Yu;Junyu Dong\",\"doi\":\"10.1109/TKDE.2025.3544081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interactive relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant challenges: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations within behavior patterns on the target relation in recommender system scenarios. In this work, we introduce a novel recommendation framework, <bold><u>D</u></b>ual-<bold><u>C</u></b>hannel <bold><u>M</u></b>ultiplex <bold><u>G</u></b>raph <bold><u>N</u></b>eural <bold><u>N</u></b>etwork (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interactive relations, and includes a relation chain representation learner and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our DCMGNN surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06% and 12.15% on average across all datasets in terms of Recall@10 and NDCG@10 respectively. The source code of our paper is available at <uri>https://github.com/lx970414/TKDE-DCMGNN</uri>.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 6\",\"pages\":\"3327-3341\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909460/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909460/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dual-Channel Multiplex Graph Neural Networks for Recommendation
Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interactive relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant challenges: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations within behavior patterns on the target relation in recommender system scenarios. In this work, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interactive relations, and includes a relation chain representation learner and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our DCMGNN surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06% and 12.15% on average across all datasets in terms of Recall@10 and NDCG@10 respectively. The source code of our paper is available at https://github.com/lx970414/TKDE-DCMGNN.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.