模式明智的透明顺序推荐

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kun Ma;Cong Xu;Zeyuan Chen;Wei Zhang
{"title":"模式明智的透明顺序推荐","authors":"Kun Ma;Cong Xu;Zeyuan Chen;Wei Zhang","doi":"10.1109/TKDE.2025.3549032","DOIUrl":null,"url":null,"abstract":"A transparent decision-making process is essential for developing reliable and trustworthy recommender systems. For sequential recommendation, it means that the model can identify key items that account for its recommendation results. However, achieving both interpretability and recommendation performance simultaneously is challenging, especially for models that take the entire sequence of items as input without screening. In this paper, we propose an interpretable framework (named PTSR) that enables a pattern-wise transparent decision-making process without extra features. It breaks the sequence of items into multi-level patterns that serve as atomic units throughout the recommendation process. The contribution of each pattern to the outcome is quantified in the probability space. With a carefully designed score correction mechanism, the pattern contribution can be implicitly learned in the absence of ground-truth key patterns. The final recommended items are those that most key patterns strongly endorse. Extensive experiments on five public datasets demonstrate remarkable recommendation performance, while statistical analysis and case studies validate the model interpretability.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3627-3640"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern-Wise Transparent Sequential Recommendation\",\"authors\":\"Kun Ma;Cong Xu;Zeyuan Chen;Wei Zhang\",\"doi\":\"10.1109/TKDE.2025.3549032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transparent decision-making process is essential for developing reliable and trustworthy recommender systems. For sequential recommendation, it means that the model can identify key items that account for its recommendation results. However, achieving both interpretability and recommendation performance simultaneously is challenging, especially for models that take the entire sequence of items as input without screening. In this paper, we propose an interpretable framework (named PTSR) that enables a pattern-wise transparent decision-making process without extra features. It breaks the sequence of items into multi-level patterns that serve as atomic units throughout the recommendation process. The contribution of each pattern to the outcome is quantified in the probability space. With a carefully designed score correction mechanism, the pattern contribution can be implicitly learned in the absence of ground-truth key patterns. The final recommended items are those that most key patterns strongly endorse. Extensive experiments on five public datasets demonstrate remarkable recommendation performance, while statistical analysis and case studies validate the model interpretability.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 6\",\"pages\":\"3627-3640\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10916944/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916944/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

透明的决策过程对于开发可靠和值得信赖的推荐系统至关重要。对于顺序推荐,这意味着模型可以识别影响其推荐结果的关键项。然而,同时实现可解释性和推荐性能是具有挑战性的,特别是对于将整个项目序列作为输入而不进行筛选的模型。在本文中,我们提出了一个可解释的框架(命名为PTSR),它使模式明智的透明决策过程没有额外的特征。它将项目序列分解为多级模式,这些模式在整个推荐过程中充当原子单元。每种模式对结果的贡献在概率空间中被量化。通过精心设计的分数校正机制,可以在没有真值键模式的情况下隐式地学习模式贡献。最后推荐的项目是大多数关键模式强烈支持的项目。在5个公共数据集上的大量实验证明了卓越的推荐性能,而统计分析和案例研究验证了模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern-Wise Transparent Sequential Recommendation
A transparent decision-making process is essential for developing reliable and trustworthy recommender systems. For sequential recommendation, it means that the model can identify key items that account for its recommendation results. However, achieving both interpretability and recommendation performance simultaneously is challenging, especially for models that take the entire sequence of items as input without screening. In this paper, we propose an interpretable framework (named PTSR) that enables a pattern-wise transparent decision-making process without extra features. It breaks the sequence of items into multi-level patterns that serve as atomic units throughout the recommendation process. The contribution of each pattern to the outcome is quantified in the probability space. With a carefully designed score correction mechanism, the pattern contribution can be implicitly learned in the absence of ground-truth key patterns. The final recommended items are those that most key patterns strongly endorse. Extensive experiments on five public datasets demonstrate remarkable recommendation performance, while statistical analysis and case studies validate the model interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信