通过添加边最小化Kirchhoff指数的有效算法

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaotian Zhou;Ahad N. Zehmakan;Zhongzhi Zhang
{"title":"通过添加边最小化Kirchhoff指数的有效算法","authors":"Xiaotian Zhou;Ahad N. Zehmakan;Zhongzhi Zhang","doi":"10.1109/TKDE.2025.3552644","DOIUrl":null,"url":null,"abstract":"The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 6","pages":"3342-3355"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges\",\"authors\":\"Xiaotian Zhou;Ahad N. Zehmakan;Zhongzhi Zhang\",\"doi\":\"10.1109/TKDE.2025.3552644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 6\",\"pages\":\"3342-3355\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930793/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930793/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Kirchhoff指数是网络中每对节点之间电阻距离的总和,是衡量网络性能的关键指标,值越低表示性能越好。本文研究了通过添加边最小化基尔霍夫指数的问题。首先给出了求解该问题的贪心算法,并基于子模比和曲率的边界分析了贪心算法的质量。然后,我们引入了一种基于梯度的贪心算法作为解决这一问题的新范式。为了加快计算速度,我们利用几何属性、凸包近似和每个点的投影坐标近似。为了进一步改进该算法,我们使用了预修剪和快速更新技术,使其特别适用于大型网络。我们提出的算法具有接近线性的时间复杂度。我们在十个真实网络上进行了大量的实验来评估我们算法的质量。结果表明,我们提出的算法在效率和有效性方面优于最先进的方法。此外,我们的算法可扩展到具有超过500万个节点和1200万条边的大型图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges
The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信