一种基于多色空间张量合并的改进谐波密集连接混合变压器网络结构

IF 7 2区 医学 Q1 BIOLOGY
Bill Cassidy , Christian McBride , Connah Kendrick , Neil D. Reeves , Joseph M. Pappachan , Cornelius J. Fernandez , Elias Chacko , Raphael Brüngel , Christoph M. Friedrich , Metib Alotaibi , Abdullah Abdulaziz AlWabel , Mohammad Alderwish , Kuan-Ying Lai , Moi Hoon Yap
{"title":"一种基于多色空间张量合并的改进谐波密集连接混合变压器网络结构","authors":"Bill Cassidy ,&nbsp;Christian McBride ,&nbsp;Connah Kendrick ,&nbsp;Neil D. Reeves ,&nbsp;Joseph M. Pappachan ,&nbsp;Cornelius J. Fernandez ,&nbsp;Elias Chacko ,&nbsp;Raphael Brüngel ,&nbsp;Christoph M. Friedrich ,&nbsp;Metib Alotaibi ,&nbsp;Abdullah Abdulaziz AlWabel ,&nbsp;Mohammad Alderwish ,&nbsp;Kuan-Ying Lai ,&nbsp;Moi Hoon Yap","doi":"10.1016/j.compbiomed.2025.110172","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic wounds and associated complications present ever growing burdens for clinics and hospitals world wide. Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally. These conditions can result in highly debilitating repercussions for those affected, with limb amputations and increased mortality risk resulting from infection becoming more common. New methods to assist clinicians in chronic wound care are therefore vital to maintain high quality care standards. This paper presents an improved HarDNet segmentation architecture which integrates a contrast-eliminating component in the initial layers of the network to enhance feature learning. We also utilise a multi-colour space tensor merging process and adjust the harmonic shape of the convolution blocks to facilitate these additional features. We train our proposed model using wound images from light skinned patients and test the model on two test sets (one set with ground truth, and one without) comprising only darker skinned cases. Subjective ratings are obtained from clinical wound experts with intraclass correlation coefficient used to determine inter-rater reliability. For the dark skin tone test set with ground truth, when comparing the baseline results (<span><math><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6389</mn></mrow></math></span>, <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5350</mn></mrow></math></span>) with the results for the proposed model (<span><math><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7610</mn></mrow></math></span>, <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6620</mn></mrow></math></span>) we demonstrate improvements in terms of Dice similarity coefficient (<span><math><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1221</mn></mrow></math></span>) and intersection over union (<span><math><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1270</mn></mrow></math></span>). Measures from the qualitative analysis also indicate improvements in terms of high expert ratings, with improvements of <span><math><mrow><mo>&gt;</mo><mn>3</mn></mrow></math></span>% demonstrated when comparing the baseline model with the proposed model. This paper presents the first study to focus on darker skin tones for chronic wound segmentation using models trained only on wound images exhibiting lighter skin. Diabetes is highly prevalent in countries where patients have darker skin tones, highlighting the need for a greater focus on such cases. Additionally, we conduct the largest qualitative study to date for chronic wound segmentation. All source code for this study is available at: <span><span>https://github.com/mmu-dermatology-research/hardnet-cws</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110172"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced harmonic densely connected hybrid transformer network architecture for chronic wound segmentation utilising multi-colour space tensor merging\",\"authors\":\"Bill Cassidy ,&nbsp;Christian McBride ,&nbsp;Connah Kendrick ,&nbsp;Neil D. Reeves ,&nbsp;Joseph M. Pappachan ,&nbsp;Cornelius J. Fernandez ,&nbsp;Elias Chacko ,&nbsp;Raphael Brüngel ,&nbsp;Christoph M. Friedrich ,&nbsp;Metib Alotaibi ,&nbsp;Abdullah Abdulaziz AlWabel ,&nbsp;Mohammad Alderwish ,&nbsp;Kuan-Ying Lai ,&nbsp;Moi Hoon Yap\",\"doi\":\"10.1016/j.compbiomed.2025.110172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic wounds and associated complications present ever growing burdens for clinics and hospitals world wide. Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally. These conditions can result in highly debilitating repercussions for those affected, with limb amputations and increased mortality risk resulting from infection becoming more common. New methods to assist clinicians in chronic wound care are therefore vital to maintain high quality care standards. This paper presents an improved HarDNet segmentation architecture which integrates a contrast-eliminating component in the initial layers of the network to enhance feature learning. We also utilise a multi-colour space tensor merging process and adjust the harmonic shape of the convolution blocks to facilitate these additional features. We train our proposed model using wound images from light skinned patients and test the model on two test sets (one set with ground truth, and one without) comprising only darker skinned cases. Subjective ratings are obtained from clinical wound experts with intraclass correlation coefficient used to determine inter-rater reliability. For the dark skin tone test set with ground truth, when comparing the baseline results (<span><math><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6389</mn></mrow></math></span>, <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5350</mn></mrow></math></span>) with the results for the proposed model (<span><math><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7610</mn></mrow></math></span>, <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6620</mn></mrow></math></span>) we demonstrate improvements in terms of Dice similarity coefficient (<span><math><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1221</mn></mrow></math></span>) and intersection over union (<span><math><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1270</mn></mrow></math></span>). Measures from the qualitative analysis also indicate improvements in terms of high expert ratings, with improvements of <span><math><mrow><mo>&gt;</mo><mn>3</mn></mrow></math></span>% demonstrated when comparing the baseline model with the proposed model. This paper presents the first study to focus on darker skin tones for chronic wound segmentation using models trained only on wound images exhibiting lighter skin. Diabetes is highly prevalent in countries where patients have darker skin tones, highlighting the need for a greater focus on such cases. Additionally, we conduct the largest qualitative study to date for chronic wound segmentation. All source code for this study is available at: <span><span>https://github.com/mmu-dermatology-research/hardnet-cws</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110172\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005232\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口和相关并发症给世界各地的诊所和医院带来越来越大的负担。静脉、动脉、糖尿病和压伤在全球变得越来越普遍。这些情况可能会对患者造成严重的影响,截肢和感染导致的死亡风险增加变得越来越普遍。因此,帮助临床医生进行慢性伤口护理的新方法对于保持高质量的护理标准至关重要。本文提出了一种改进的硬网分割架构,该架构在网络的初始层中集成了对比度消除组件,以增强特征学习。我们还利用多色空间张量合并过程并调整卷积块的谐波形状以促进这些附加特征。我们使用浅肤色患者的伤口图像来训练我们提出的模型,并在两个只包含深肤色病例的测试集(一组具有基本事实,另一组没有)上测试模型。主观评分是由临床伤口专家获得的,类内相关系数用于确定评级间的可靠性。对于具有真实值的深色肤色测试集,当比较基线结果(DSC=0.6389, IoU=0.5350)与提议模型的结果(DSC=0.7610, IoU=0.6620)时,我们证明了骰子相似系数(+0.1221)和交集比联合(+0.1270)方面的改进。来自定性分析的测量也表明,在高专家评级方面有所改进,在将基线模型与建议模型进行比较时,改进了>;3%。本文提出了第一项研究,重点是深色肤色的慢性伤口分割使用模型只训练伤口图像显示较浅的皮肤。糖尿病在患者肤色较深的国家非常普遍,因此需要更加关注这类病例。此外,我们对慢性伤口分割进行了迄今为止最大的定性研究。本研究的所有源代码可在:https://github.com/mmu-dermatology-research/hardnet-cws。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced harmonic densely connected hybrid transformer network architecture for chronic wound segmentation utilising multi-colour space tensor merging
Chronic wounds and associated complications present ever growing burdens for clinics and hospitals world wide. Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally. These conditions can result in highly debilitating repercussions for those affected, with limb amputations and increased mortality risk resulting from infection becoming more common. New methods to assist clinicians in chronic wound care are therefore vital to maintain high quality care standards. This paper presents an improved HarDNet segmentation architecture which integrates a contrast-eliminating component in the initial layers of the network to enhance feature learning. We also utilise a multi-colour space tensor merging process and adjust the harmonic shape of the convolution blocks to facilitate these additional features. We train our proposed model using wound images from light skinned patients and test the model on two test sets (one set with ground truth, and one without) comprising only darker skinned cases. Subjective ratings are obtained from clinical wound experts with intraclass correlation coefficient used to determine inter-rater reliability. For the dark skin tone test set with ground truth, when comparing the baseline results (DSC=0.6389, IoU=0.5350) with the results for the proposed model (DSC=0.7610, IoU=0.6620) we demonstrate improvements in terms of Dice similarity coefficient (+0.1221) and intersection over union (+0.1270). Measures from the qualitative analysis also indicate improvements in terms of high expert ratings, with improvements of >3% demonstrated when comparing the baseline model with the proposed model. This paper presents the first study to focus on darker skin tones for chronic wound segmentation using models trained only on wound images exhibiting lighter skin. Diabetes is highly prevalent in countries where patients have darker skin tones, highlighting the need for a greater focus on such cases. Additionally, we conduct the largest qualitative study to date for chronic wound segmentation. All source code for this study is available at: https://github.com/mmu-dermatology-research/hardnet-cws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信