Muhammad Hassan , Giovanna Salbitani , Simona Carfagna , Javed Ali Khan
{"title":"深度学习满足海洋生物学:优化融合特征和lime驱动的自动浮游生物分类见解","authors":"Muhammad Hassan , Giovanna Salbitani , Simona Carfagna , Javed Ali Khan","doi":"10.1016/j.compbiomed.2025.110273","DOIUrl":null,"url":null,"abstract":"<div><div>Plankton are microorganisms that play an important role in marine food webs as primary producers in the trophic web. Traditional plankton identification methods using manual microscopy and sampling are time-consuming, labor-intensive, and prone to errors. Deep learning has improved the automation of plankton identification, but it remains challenging to achieve high accuracy and efficiency in computation with limited labeled data. In this paper, we proposed an improved plankton classification model that is more accurate and interpretable. We train two models, InceptionResNetV2 (transfer learning) and DeepPlanktonNet (from scratch), on the WHOI dataset. We utilize feature fusion to supplement feature representation, merging the outputs of both models. Feature selection is achieved through the Whale Optimization Algorithm (WOA), eliminating redundancy and making it more computationally efficient. Additionally, we also employ Local Interpretable Model-agnostic Explanations (LIME) to make the model more interpretable and gain insights into how the model makes decisions. Additionally, feature selection using WOA reduces feature space and has less inference and computational cost. Our method achieves a classification accuracy of 98.79 %, which is better than previous state-of-the-art methods. For robustness testing, we train nine machine learning classifiers on the optimized features. By significantly improving classification accuracy and speed, our method enables large-scale ecological surveys, water quality monitoring, and biodiversity studies. These advances allow researchers to and environmental scientists to automate plankton classification more reliably, supporting marine conservation and resource management.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110273"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning meets marine biology: Optimized fused features and LIME-driven insights for automated plankton classification\",\"authors\":\"Muhammad Hassan , Giovanna Salbitani , Simona Carfagna , Javed Ali Khan\",\"doi\":\"10.1016/j.compbiomed.2025.110273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plankton are microorganisms that play an important role in marine food webs as primary producers in the trophic web. Traditional plankton identification methods using manual microscopy and sampling are time-consuming, labor-intensive, and prone to errors. Deep learning has improved the automation of plankton identification, but it remains challenging to achieve high accuracy and efficiency in computation with limited labeled data. In this paper, we proposed an improved plankton classification model that is more accurate and interpretable. We train two models, InceptionResNetV2 (transfer learning) and DeepPlanktonNet (from scratch), on the WHOI dataset. We utilize feature fusion to supplement feature representation, merging the outputs of both models. Feature selection is achieved through the Whale Optimization Algorithm (WOA), eliminating redundancy and making it more computationally efficient. Additionally, we also employ Local Interpretable Model-agnostic Explanations (LIME) to make the model more interpretable and gain insights into how the model makes decisions. Additionally, feature selection using WOA reduces feature space and has less inference and computational cost. Our method achieves a classification accuracy of 98.79 %, which is better than previous state-of-the-art methods. For robustness testing, we train nine machine learning classifiers on the optimized features. By significantly improving classification accuracy and speed, our method enables large-scale ecological surveys, water quality monitoring, and biodiversity studies. These advances allow researchers to and environmental scientists to automate plankton classification more reliably, supporting marine conservation and resource management.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110273\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525006249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525006249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Deep learning meets marine biology: Optimized fused features and LIME-driven insights for automated plankton classification
Plankton are microorganisms that play an important role in marine food webs as primary producers in the trophic web. Traditional plankton identification methods using manual microscopy and sampling are time-consuming, labor-intensive, and prone to errors. Deep learning has improved the automation of plankton identification, but it remains challenging to achieve high accuracy and efficiency in computation with limited labeled data. In this paper, we proposed an improved plankton classification model that is more accurate and interpretable. We train two models, InceptionResNetV2 (transfer learning) and DeepPlanktonNet (from scratch), on the WHOI dataset. We utilize feature fusion to supplement feature representation, merging the outputs of both models. Feature selection is achieved through the Whale Optimization Algorithm (WOA), eliminating redundancy and making it more computationally efficient. Additionally, we also employ Local Interpretable Model-agnostic Explanations (LIME) to make the model more interpretable and gain insights into how the model makes decisions. Additionally, feature selection using WOA reduces feature space and has less inference and computational cost. Our method achieves a classification accuracy of 98.79 %, which is better than previous state-of-the-art methods. For robustness testing, we train nine machine learning classifiers on the optimized features. By significantly improving classification accuracy and speed, our method enables large-scale ecological surveys, water quality monitoring, and biodiversity studies. These advances allow researchers to and environmental scientists to automate plankton classification more reliably, supporting marine conservation and resource management.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.