{"title":"具有不定非线性和hardy型项的变指数加权拟线性椭圆方程退化Leray-Lions算子弱解的存在性","authors":"Khaled Kefi","doi":"10.1016/j.rinam.2025.100580","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates multiplicity results of weak solutions to a degenerate weighted elliptic problem involving Leray–Lions operators with indefinite nonlinearity and variable exponents. Using critical point theory, we establish the existence of at least one, respectively three weak solutions under suitable assumptions. The results extend to a wide range of nonlinear problems in mathematical physics, addressing the complications arising from degeneracy, Hardy-type singularities, and indefinite source terms.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100580"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of weak solutions to degenerate Leray–Lions operators in weighted quasilinear elliptic equations with variable exponents, indefinite nonlinearity, and Hardy-type term\",\"authors\":\"Khaled Kefi\",\"doi\":\"10.1016/j.rinam.2025.100580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates multiplicity results of weak solutions to a degenerate weighted elliptic problem involving Leray–Lions operators with indefinite nonlinearity and variable exponents. Using critical point theory, we establish the existence of at least one, respectively three weak solutions under suitable assumptions. The results extend to a wide range of nonlinear problems in mathematical physics, addressing the complications arising from degeneracy, Hardy-type singularities, and indefinite source terms.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100580\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence of weak solutions to degenerate Leray–Lions operators in weighted quasilinear elliptic equations with variable exponents, indefinite nonlinearity, and Hardy-type term
This paper investigates multiplicity results of weak solutions to a degenerate weighted elliptic problem involving Leray–Lions operators with indefinite nonlinearity and variable exponents. Using critical point theory, we establish the existence of at least one, respectively three weak solutions under suitable assumptions. The results extend to a wide range of nonlinear problems in mathematical physics, addressing the complications arising from degeneracy, Hardy-type singularities, and indefinite source terms.