基于退化抛物方程的期权漂移率反问题收敛性分析

IF 1.4 Q2 MATHEMATICS, APPLIED
Miao-miao Song , Zui-cha Deng , Xiang Li , Qiu Cui
{"title":"基于退化抛物方程的期权漂移率反问题收敛性分析","authors":"Miao-miao Song ,&nbsp;Zui-cha Deng ,&nbsp;Xiang Li ,&nbsp;Qiu Cui","doi":"10.1016/j.rinam.2025.100561","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the convergence of the inverse drift rate problem of option pricing based on degenerate parabolic equations, aiming to recover the stock price drift rate function by known option market prices. Unlike the classical inverse parabolic equation problem, the article transforms the original problem into an inverse problem with principal coefficients of the degenerate parabolic equation over a bounded region by variable substitution, thus avoiding the error introduced by artificial truncation. Under the optimal control framework, the problem is transformed into an optimization problem, the existence of the minimal solution is proved, and a mathematical proof of the convergence of the optimal solution is given. Finally, the gradient-type iterative method is applied to obtain the numerical solution of the inverse problem, and numerical experiments are conducted to verify it. This study provides an effective theoretical framework and numerical method for inferring the stock price drift rate from the option market price.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100561"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of option drift rate inverse problem based on degenerate parabolic equation\",\"authors\":\"Miao-miao Song ,&nbsp;Zui-cha Deng ,&nbsp;Xiang Li ,&nbsp;Qiu Cui\",\"doi\":\"10.1016/j.rinam.2025.100561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the convergence of the inverse drift rate problem of option pricing based on degenerate parabolic equations, aiming to recover the stock price drift rate function by known option market prices. Unlike the classical inverse parabolic equation problem, the article transforms the original problem into an inverse problem with principal coefficients of the degenerate parabolic equation over a bounded region by variable substitution, thus avoiding the error introduced by artificial truncation. Under the optimal control framework, the problem is transformed into an optimization problem, the existence of the minimal solution is proved, and a mathematical proof of the convergence of the optimal solution is given. Finally, the gradient-type iterative method is applied to obtain the numerical solution of the inverse problem, and numerical experiments are conducted to verify it. This study provides an effective theoretical framework and numerical method for inferring the stock price drift rate from the option market price.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100561\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于退化抛物方程的期权定价逆漂移率问题的收敛性,旨在通过已知的期权市场价格恢复股票价格漂移率函数。与经典的反抛物方程问题不同,本文通过变量替换将原问题转化为退化抛物方程在有界区域上的主系数反问题,从而避免了人为截断带来的误差。在最优控制框架下,将该问题转化为优化问题,证明了最小解的存在性,并给出了最优解收敛性的数学证明。最后,采用梯度型迭代法得到了反问题的数值解,并进行了数值实验验证。本研究为从期权市场价格推断股票价格漂移率提供了有效的理论框架和数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of option drift rate inverse problem based on degenerate parabolic equation
In this paper, we study the convergence of the inverse drift rate problem of option pricing based on degenerate parabolic equations, aiming to recover the stock price drift rate function by known option market prices. Unlike the classical inverse parabolic equation problem, the article transforms the original problem into an inverse problem with principal coefficients of the degenerate parabolic equation over a bounded region by variable substitution, thus avoiding the error introduced by artificial truncation. Under the optimal control framework, the problem is transformed into an optimization problem, the existence of the minimal solution is proved, and a mathematical proof of the convergence of the optimal solution is given. Finally, the gradient-type iterative method is applied to obtain the numerical solution of the inverse problem, and numerical experiments are conducted to verify it. This study provides an effective theoretical framework and numerical method for inferring the stock price drift rate from the option market price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信