Srinath Krishnamurthy , Maria Musgaard , Benjamin Gerald Tehan, Ali Jazayeri, Idlir Liko
{"title":"氢/氘交换质谱法在早期药物发现中的作用","authors":"Srinath Krishnamurthy , Maria Musgaard , Benjamin Gerald Tehan, Ali Jazayeri, Idlir Liko","doi":"10.1016/j.sbi.2025.103051","DOIUrl":null,"url":null,"abstract":"<div><div>Protein function relies on protein dynamics and therefore dynamical information can be crucial for drug discovery of challenging protein targets. Assessing protein dynamics experimentally has traditionally been nontrivial. However, amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now an established technique that can expose details about changes in protein dynamics, binding sites and allostery at the peptide level. HDX-MS is a versatile and powerful biophysical tool to gain insights into the workings of numerous protein systems and complexes. Advances in instrumentation, automation, data analysis, and interpretation over the past two decades have led to increased uptake and democratization of HDX-MS in both academic and industry settings. Here, we outline the current uses of HDX-MS in early-stage drug discovery and illustrate the interplay with computational chemistry to maximize the value of data obtained from HDX-MS experiments. Finally, we consider approaches which may aid structural interpretation of HDX-MS data in the coming years.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103051"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolving role of hydrogen/deuterium exchange mass spectrometry in early-stage drug discovery\",\"authors\":\"Srinath Krishnamurthy , Maria Musgaard , Benjamin Gerald Tehan, Ali Jazayeri, Idlir Liko\",\"doi\":\"10.1016/j.sbi.2025.103051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein function relies on protein dynamics and therefore dynamical information can be crucial for drug discovery of challenging protein targets. Assessing protein dynamics experimentally has traditionally been nontrivial. However, amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now an established technique that can expose details about changes in protein dynamics, binding sites and allostery at the peptide level. HDX-MS is a versatile and powerful biophysical tool to gain insights into the workings of numerous protein systems and complexes. Advances in instrumentation, automation, data analysis, and interpretation over the past two decades have led to increased uptake and democratization of HDX-MS in both academic and industry settings. Here, we outline the current uses of HDX-MS in early-stage drug discovery and illustrate the interplay with computational chemistry to maximize the value of data obtained from HDX-MS experiments. Finally, we consider approaches which may aid structural interpretation of HDX-MS data in the coming years.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"92 \",\"pages\":\"Article 103051\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000697\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000697","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The evolving role of hydrogen/deuterium exchange mass spectrometry in early-stage drug discovery
Protein function relies on protein dynamics and therefore dynamical information can be crucial for drug discovery of challenging protein targets. Assessing protein dynamics experimentally has traditionally been nontrivial. However, amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now an established technique that can expose details about changes in protein dynamics, binding sites and allostery at the peptide level. HDX-MS is a versatile and powerful biophysical tool to gain insights into the workings of numerous protein systems and complexes. Advances in instrumentation, automation, data analysis, and interpretation over the past two decades have led to increased uptake and democratization of HDX-MS in both academic and industry settings. Here, we outline the current uses of HDX-MS in early-stage drug discovery and illustrate the interplay with computational chemistry to maximize the value of data obtained from HDX-MS experiments. Finally, we consider approaches which may aid structural interpretation of HDX-MS data in the coming years.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation