个性化ACL重建分类的临床相关预测建模

Q2 Health Professions
Xishi Zhu , Ryan Henry , Emily Jackson , Joe M. Hart , Jiaqi Gong
{"title":"个性化ACL重建分类的临床相关预测建模","authors":"Xishi Zhu ,&nbsp;Ryan Henry ,&nbsp;Emily Jackson ,&nbsp;Joe M. Hart ,&nbsp;Jiaqi Gong","doi":"10.1016/j.smhl.2025.100575","DOIUrl":null,"url":null,"abstract":"<div><div>Anterior Cruciate Ligament (ACL) reconstruction outcomes and return-to-sport readiness vary significantly among patients, yet current classification methods often lack interpretability and personalization. We propose an explainable predictive model for ACL reconstruction classification through multi-modal analysis of gait dynamics and patient characteristics. Using inertial measurement unit (IMU) sensors on participants’ wrists, ankles, and sacrum, we collected gait data during walking and jogging tasks, alongside patient-specific survey information. For gait dynamics, we employed Phase Slope Index to quantify inter-sensor relationships and trained classifiers for different ACL reconstruction outcomes(left vs right injury, healthy vs injured), achieving high classification performance (96.37% accuracy). Model explanations using heatmaps and permutation importance revealed that paired body movements are crucial in classification, with more distinct patterns in jogging than walking. For patient characteristics, t-SNE visualization demonstrated that model confidence correlated strongly with recovery duration. While longer recovery typically leads to more normal gait patterns, our approach provides a quantitative method to visualize this process transparently. This explainable, personalized approach can improve rehabilitation strategies and inform more accurate return-to-sport decisions in sports medicine.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100575"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinically relevant predictive modeling for personalized ACL reconstruction classification\",\"authors\":\"Xishi Zhu ,&nbsp;Ryan Henry ,&nbsp;Emily Jackson ,&nbsp;Joe M. Hart ,&nbsp;Jiaqi Gong\",\"doi\":\"10.1016/j.smhl.2025.100575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anterior Cruciate Ligament (ACL) reconstruction outcomes and return-to-sport readiness vary significantly among patients, yet current classification methods often lack interpretability and personalization. We propose an explainable predictive model for ACL reconstruction classification through multi-modal analysis of gait dynamics and patient characteristics. Using inertial measurement unit (IMU) sensors on participants’ wrists, ankles, and sacrum, we collected gait data during walking and jogging tasks, alongside patient-specific survey information. For gait dynamics, we employed Phase Slope Index to quantify inter-sensor relationships and trained classifiers for different ACL reconstruction outcomes(left vs right injury, healthy vs injured), achieving high classification performance (96.37% accuracy). Model explanations using heatmaps and permutation importance revealed that paired body movements are crucial in classification, with more distinct patterns in jogging than walking. For patient characteristics, t-SNE visualization demonstrated that model confidence correlated strongly with recovery duration. While longer recovery typically leads to more normal gait patterns, our approach provides a quantitative method to visualize this process transparently. This explainable, personalized approach can improve rehabilitation strategies and inform more accurate return-to-sport decisions in sports medicine.</div></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"36 \",\"pages\":\"Article 100575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648325000364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

前交叉韧带(ACL)重建的结果和恢复运动的准备程度在患者之间差异很大,但目前的分类方法往往缺乏可解释性和个性化。通过对步态动力学和患者特征的多模态分析,我们提出了一个可解释的ACL重建分类预测模型。通过在参与者的手腕、脚踝和骶骨上安装惯性测量单元(IMU)传感器,我们收集了行走和慢跑任务期间的步态数据,以及患者特定的调查信息。对于步态动力学,我们使用相位斜率指数来量化传感器间的关系,并针对不同的ACL重建结果(左损伤与右损伤,健康与受伤)训练分类器,获得了较高的分类性能(96.37%的准确率)。使用热图和排列重要性的模型解释显示成对的身体运动在分类中是至关重要的,慢跑比步行的模式更明显。对于患者特征,t-SNE可视化显示模型置信度与恢复时间密切相关。虽然更长的恢复时间通常会导致更正常的步态模式,但我们的方法提供了一种定量的方法来透明地可视化这一过程。这种可解释的、个性化的方法可以改善康复策略,并为运动医学提供更准确的回归运动决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinically relevant predictive modeling for personalized ACL reconstruction classification
Anterior Cruciate Ligament (ACL) reconstruction outcomes and return-to-sport readiness vary significantly among patients, yet current classification methods often lack interpretability and personalization. We propose an explainable predictive model for ACL reconstruction classification through multi-modal analysis of gait dynamics and patient characteristics. Using inertial measurement unit (IMU) sensors on participants’ wrists, ankles, and sacrum, we collected gait data during walking and jogging tasks, alongside patient-specific survey information. For gait dynamics, we employed Phase Slope Index to quantify inter-sensor relationships and trained classifiers for different ACL reconstruction outcomes(left vs right injury, healthy vs injured), achieving high classification performance (96.37% accuracy). Model explanations using heatmaps and permutation importance revealed that paired body movements are crucial in classification, with more distinct patterns in jogging than walking. For patient characteristics, t-SNE visualization demonstrated that model confidence correlated strongly with recovery duration. While longer recovery typically leads to more normal gait patterns, our approach provides a quantitative method to visualize this process transparently. This explainable, personalized approach can improve rehabilitation strategies and inform more accurate return-to-sport decisions in sports medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信