人机协同安全的速度决策增强与分离监控模式

IF 3.6
MHM Ali, Mostafa R.  A. Atia, Moustafa A. Fouz
{"title":"人机协同安全的速度决策增强与分离监控模式","authors":"MHM Ali,&nbsp;Mostafa R.  A. Atia,&nbsp;Moustafa A. Fouz","doi":"10.1016/j.sasc.2025.200260","DOIUrl":null,"url":null,"abstract":"<div><div>Involving human robot collaboration advancements are transforming industrial safety protocols. This paper proposes an enhancement approach to improve robot decision accuracy, in Speed and Separation Monitoring (SSM), according to ISO/TS 15066 safety standard. This approach integrates Machine Learning (ML), Artificial Intelligence (AI), for decision-making using data extracted from an active depth camera, which tracks operators’ hand movements and measures distances on line. The developed algorithm enables the robot to make decisions based on protective separation distance (PSD) and dynamic separation distances (DSDs). A test rig developed to determine separation distances required across four zones for safe pick-and-place application. The result shows that the defined thresholds enhances both safety and operation efficiency. This creates a suitable collaborative environment for the operator, and makes the task easier to perform.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200260"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision enhancement of speed and separating monitoring modes for human-robot collaborative safety\",\"authors\":\"MHM Ali,&nbsp;Mostafa R.  A. Atia,&nbsp;Moustafa A. Fouz\",\"doi\":\"10.1016/j.sasc.2025.200260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Involving human robot collaboration advancements are transforming industrial safety protocols. This paper proposes an enhancement approach to improve robot decision accuracy, in Speed and Separation Monitoring (SSM), according to ISO/TS 15066 safety standard. This approach integrates Machine Learning (ML), Artificial Intelligence (AI), for decision-making using data extracted from an active depth camera, which tracks operators’ hand movements and measures distances on line. The developed algorithm enables the robot to make decisions based on protective separation distance (PSD) and dynamic separation distances (DSDs). A test rig developed to determine separation distances required across four zones for safe pick-and-place application. The result shows that the defined thresholds enhances both safety and operation efficiency. This creates a suitable collaborative environment for the operator, and makes the task easier to perform.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"7 \",\"pages\":\"Article 200260\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294192500078X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294192500078X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

涉及人机协作的进步正在改变工业安全协议。根据ISO/TS 15066安全标准,提出了一种在速度与分离监测(SSM)中提高机器人决策精度的增强方法。这种方法集成了机器学习(ML)和人工智能(AI),利用从主动深度相机提取的数据进行决策,该相机可以跟踪操作员的手部运动并测量在线距离。所开发的算法使机器人能够基于保护分离距离(PSD)和动态分离距离(dsd)进行决策。开发了一种测试装置,用于确定四个区域之间所需的分离距离,以实现安全取放应用。结果表明,所定义的阈值既提高了安全性,又提高了运行效率。这为操作人员创造了一个合适的协作环境,使任务更容易执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision enhancement of speed and separating monitoring modes for human-robot collaborative safety
Involving human robot collaboration advancements are transforming industrial safety protocols. This paper proposes an enhancement approach to improve robot decision accuracy, in Speed and Separation Monitoring (SSM), according to ISO/TS 15066 safety standard. This approach integrates Machine Learning (ML), Artificial Intelligence (AI), for decision-making using data extracted from an active depth camera, which tracks operators’ hand movements and measures distances on line. The developed algorithm enables the robot to make decisions based on protective separation distance (PSD) and dynamic separation distances (DSDs). A test rig developed to determine separation distances required across four zones for safe pick-and-place application. The result shows that the defined thresholds enhances both safety and operation efficiency. This creates a suitable collaborative environment for the operator, and makes the task easier to perform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信