2边汉密尔顿连接蜻蜓网络

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Huimei Guo , Rong-Xia Hao , Jie Wu
{"title":"2边汉密尔顿连接蜻蜓网络","authors":"Huimei Guo ,&nbsp;Rong-Xia Hao ,&nbsp;Jie Wu","doi":"10.1016/j.jpdc.2025.105095","DOIUrl":null,"url":null,"abstract":"<div><div>The dragonfly networks are being used in the supercomputers of today. It is of interest to study the topological properties of dragonfly networks. Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be a graph. Let <em>X</em> be a subset of <span><math><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></math></span> such that every component induced by <em>X</em> on <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a path. If, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> and after adding all edges in <em>X</em> to <em>G</em>, the resulting graph contains a Hamiltonian cycle that includes all edges in <em>X</em>, then the graph <em>G</em> is called <em>k</em>-edge-Hamilton-connected. This property can be used to design and optimize routing and forwarding algorithms. By finding such Hamiltonian cycle containing specific edges in the network, it can be ensured that every node can act as an intermediate node to forward packets through a specific channel, thus enabling efficient data transmission and routing. For <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, determining whether a graph is <em>k</em>-edge-Hamilton-connected is a challenging problem, as it is known to be NP-complete. 2-edge-Hamilton-connected is an extension of Hamilton-connected. In this paper, we prove that the relative arrangement dragonfly network, a type of dragonfly network constructed by the global connections based on relative arrangements, is 2-edge-Hamilton-connected, and this property shows that dragonfly networks have strong reliability. In addition, we determined that <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is 1-Hamilton-connected and paired 2-disjoint path coverable with <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> and <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"202 ","pages":"Article 105095"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-edge-Hamilton-connected dragonfly network\",\"authors\":\"Huimei Guo ,&nbsp;Rong-Xia Hao ,&nbsp;Jie Wu\",\"doi\":\"10.1016/j.jpdc.2025.105095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dragonfly networks are being used in the supercomputers of today. It is of interest to study the topological properties of dragonfly networks. Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be a graph. Let <em>X</em> be a subset of <span><math><mo>{</mo><mi>u</mi><mi>v</mi><mo>:</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>≠</mo><mi>v</mi><mo>}</mo></math></span> such that every component induced by <em>X</em> on <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a path. If, <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> and after adding all edges in <em>X</em> to <em>G</em>, the resulting graph contains a Hamiltonian cycle that includes all edges in <em>X</em>, then the graph <em>G</em> is called <em>k</em>-edge-Hamilton-connected. This property can be used to design and optimize routing and forwarding algorithms. By finding such Hamiltonian cycle containing specific edges in the network, it can be ensured that every node can act as an intermediate node to forward packets through a specific channel, thus enabling efficient data transmission and routing. For <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, determining whether a graph is <em>k</em>-edge-Hamilton-connected is a challenging problem, as it is known to be NP-complete. 2-edge-Hamilton-connected is an extension of Hamilton-connected. In this paper, we prove that the relative arrangement dragonfly network, a type of dragonfly network constructed by the global connections based on relative arrangements, is 2-edge-Hamilton-connected, and this property shows that dragonfly networks have strong reliability. In addition, we determined that <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is 1-Hamilton-connected and paired 2-disjoint path coverable with <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> and <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"202 \",\"pages\":\"Article 105095\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731525000620\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000620","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蜻蜓网络被用于今天的超级计算机。研究蜻蜓网络的拓扑特性具有重要的意义。设G=(V(G),E(G))是一个图。设X是{uv:u,v∈v (G)且u≠v}的子集,使得X在v (G)上诱导出的每个分量都是一条路径。如果,|X|≤k,将X中的所有边加到G中,得到的图包含一个包含X中所有边的哈密顿循环,则图G称为k边哈密顿连通。此属性可用于设计和优化路由和转发算法。通过在网络中找到这种包含特定边的哈密顿循环,可以保证每个节点都能作为中间节点通过特定通道转发数据包,从而实现高效的数据传输和路由。对于k=2,确定图是否为k边汉密尔顿连通是一个具有挑战性的问题,因为已知它是np完全的。二边哈密顿连通是哈密顿连通的扩展。本文证明了一种基于相对排列的全局连接构建的蜻蜓网络——相对排列蜻蜓网络是2边hamilton连通的,这一性质表明蜻蜓网络具有较强的可靠性。此外,我们确定了D(n,h,g)是1- hamilton连通和配对的2-不相交路径,可被n≥4和h≥2覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-edge-Hamilton-connected dragonfly network
The dragonfly networks are being used in the supercomputers of today. It is of interest to study the topological properties of dragonfly networks. Let G=(V(G),E(G)) be a graph. Let X be a subset of {uv:u,vV(G)anduv} such that every component induced by X on V(G) is a path. If, |X|k and after adding all edges in X to G, the resulting graph contains a Hamiltonian cycle that includes all edges in X, then the graph G is called k-edge-Hamilton-connected. This property can be used to design and optimize routing and forwarding algorithms. By finding such Hamiltonian cycle containing specific edges in the network, it can be ensured that every node can act as an intermediate node to forward packets through a specific channel, thus enabling efficient data transmission and routing. For k=2, determining whether a graph is k-edge-Hamilton-connected is a challenging problem, as it is known to be NP-complete. 2-edge-Hamilton-connected is an extension of Hamilton-connected. In this paper, we prove that the relative arrangement dragonfly network, a type of dragonfly network constructed by the global connections based on relative arrangements, is 2-edge-Hamilton-connected, and this property shows that dragonfly networks have strong reliability. In addition, we determined that D(n,h,g) is 1-Hamilton-connected and paired 2-disjoint path coverable with n4 and h2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信