无法到达Γ2n+1,m

IF 0.6 2区 数学 Q2 LOGIC
Derek Levinson
{"title":"无法到达Γ2n+1,m","authors":"Derek Levinson","doi":"10.1016/j.apal.2025.103604","DOIUrl":null,"url":null,"abstract":"<div><div>We find bounds for the maximal length of a sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>-sets under <em>AD</em> and show there is no sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn></mrow></msub></math></span>-sets of length <span><math><msubsup><mrow><mi>δ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>. As a special case, there is no sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>-sets of length <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>. These are the optimal results for the pointclasses <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103604"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unreachability of Γ2n+1,m\",\"authors\":\"Derek Levinson\",\"doi\":\"10.1016/j.apal.2025.103604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We find bounds for the maximal length of a sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>-sets under <em>AD</em> and show there is no sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn></mrow></msub></math></span>-sets of length <span><math><msubsup><mrow><mi>δ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>. As a special case, there is no sequence of distinct <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>-sets of length <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>. These are the optimal results for the pointclasses <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2n</mn><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 9\",\"pages\":\"Article 103604\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000533\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们找到了在AD条件下具有不同Γ2n+1,m-集的序列的最大长度的界,并证明不存在具有不同Γ2n+1-集的序列,其长度为δ2n+31。作为一种特殊情况,不存在不同的序列Γ1,m-长度为λ m+2的集合。这些是pointclass Γ2n+1和Γ1,m的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unreachability of Γ2n+1,m
We find bounds for the maximal length of a sequence of distinct Γ2n+1,m-sets under AD and show there is no sequence of distinct Γ2n+1-sets of length δ2n+31. As a special case, there is no sequence of distinct Γ1,m-sets of length m+2. These are the optimal results for the pointclasses Γ2n+1 and Γ1,m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信