齐次分数型Musielak Sobolev空间中具有消失势的广义Choquard Schr $$\ddot{\text {o}}$$ dinger方程的基态解

IF 2.5 2区 数学 Q1 MATHEMATICS
Shilpa Gupta, Gaurav Dwivedi
{"title":"齐次分数型Musielak Sobolev空间中具有消失势的广义Choquard Schr $$\\ddot{\\text {o}}$$ dinger方程的基态解","authors":"Shilpa Gupta, Gaurav Dwivedi","doi":"10.1007/s13540-025-00411-7","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to establish the existence of a weak solution for the following problem: </p><span>$$\\begin{aligned} (-\\Delta )^{s}_{\\mathcal {H}}u(x) +V(x)h(x,x,|u|)u(x)=\\left( \\int _{{\\mathbb R}^{N}}\\dfrac{K(y)F(u(y))}{|x-y|^\\lambda }\\,\\textrm{d}y\\right) K(x)f(u(x)), \\end{aligned}$$</span><p>in <span>\\({\\mathbb R}^{N}\\)</span> where <span>\\(N\\ge 1\\)</span>, <span>\\(s\\in (0,1), \\lambda \\in (0,N), \\mathcal {H}(x,y,t)=\\int _{0}^{|t|} h(x,y,r)r\\ dr,\\)</span> <span>\\( h:{\\mathbb R}^{N}\\times {\\mathbb R}^{N}\\times [0,\\infty )\\rightarrow [0,\\infty )\\)</span> is a generalized <i>N</i>-function and <span>\\((-\\Delta )^{s}_{\\mathcal {H}}\\)</span> is a generalized fractional Laplace operator. The functions <span>\\(V,K:{\\mathbb R}^{N}\\rightarrow (0,\\infty )\\)</span>, non-linear function <span>\\(f:{\\mathbb R}\\rightarrow {\\mathbb R}\\)</span> are continuous and <span>\\( F(t)=\\int _{0}^{t}f(r)dr.\\)</span> First, we introduce the homogeneous fractional Musielak–Sobolev space and investigate their properties. After that, we pose the given problem in that space. To establish our existence results, we use variational technique based on the mountain pass theorem. We also prove the existence of a ground state solution by the method of Nehari manifold.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solution for a generalized Choquard Schr $$\\\\ddot{\\\\text {o}}$$ dinger equation with vanishing potential in homogeneous fractional Musielak Sobolev spaces\",\"authors\":\"Shilpa Gupta, Gaurav Dwivedi\",\"doi\":\"10.1007/s13540-025-00411-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to establish the existence of a weak solution for the following problem: </p><span>$$\\\\begin{aligned} (-\\\\Delta )^{s}_{\\\\mathcal {H}}u(x) +V(x)h(x,x,|u|)u(x)=\\\\left( \\\\int _{{\\\\mathbb R}^{N}}\\\\dfrac{K(y)F(u(y))}{|x-y|^\\\\lambda }\\\\,\\\\textrm{d}y\\\\right) K(x)f(u(x)), \\\\end{aligned}$$</span><p>in <span>\\\\({\\\\mathbb R}^{N}\\\\)</span> where <span>\\\\(N\\\\ge 1\\\\)</span>, <span>\\\\(s\\\\in (0,1), \\\\lambda \\\\in (0,N), \\\\mathcal {H}(x,y,t)=\\\\int _{0}^{|t|} h(x,y,r)r\\\\ dr,\\\\)</span> <span>\\\\( h:{\\\\mathbb R}^{N}\\\\times {\\\\mathbb R}^{N}\\\\times [0,\\\\infty )\\\\rightarrow [0,\\\\infty )\\\\)</span> is a generalized <i>N</i>-function and <span>\\\\((-\\\\Delta )^{s}_{\\\\mathcal {H}}\\\\)</span> is a generalized fractional Laplace operator. The functions <span>\\\\(V,K:{\\\\mathbb R}^{N}\\\\rightarrow (0,\\\\infty )\\\\)</span>, non-linear function <span>\\\\(f:{\\\\mathbb R}\\\\rightarrow {\\\\mathbb R}\\\\)</span> are continuous and <span>\\\\( F(t)=\\\\int _{0}^{t}f(r)dr.\\\\)</span> First, we introduce the homogeneous fractional Musielak–Sobolev space and investigate their properties. After that, we pose the given problem in that space. To establish our existence results, we use variational technique based on the mountain pass theorem. We also prove the existence of a ground state solution by the method of Nehari manifold.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00411-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00411-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在建立以下问题$$\begin{aligned} (-\Delta )^{s}_{\mathcal {H}}u(x) +V(x)h(x,x,|u|)u(x)=\left( \int _{{\mathbb R}^{N}}\dfrac{K(y)F(u(y))}{|x-y|^\lambda }\,\textrm{d}y\right) K(x)f(u(x)), \end{aligned}$$在\({\mathbb R}^{N}\)中的弱解的存在性,其中\(N\ge 1\), \(s\in (0,1), \lambda \in (0,N), \mathcal {H}(x,y,t)=\int _{0}^{|t|} h(x,y,r)r\ dr,\)\( h:{\mathbb R}^{N}\times {\mathbb R}^{N}\times [0,\infty )\rightarrow [0,\infty )\)是一个广义n函数,\((-\Delta )^{s}_{\mathcal {H}}\)是一个广义分数阶拉普拉斯算子。函数\(V,K:{\mathbb R}^{N}\rightarrow (0,\infty )\),非线性函数\(f:{\mathbb R}\rightarrow {\mathbb R}\)是连续的,\( F(t)=\int _{0}^{t}f(r)dr.\)首先,我们引入齐次分数型Musielak-Sobolev空间并研究了它们的性质。之后,我们在这个空间中提出给定的问题。为了证明我们的存在性结果,我们使用了基于山口定理的变分技术。我们还用Nehari流形的方法证明了一个基态解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground state solution for a generalized Choquard Schr $$\ddot{\text {o}}$$ dinger equation with vanishing potential in homogeneous fractional Musielak Sobolev spaces

This paper aims to establish the existence of a weak solution for the following problem:

$$\begin{aligned} (-\Delta )^{s}_{\mathcal {H}}u(x) +V(x)h(x,x,|u|)u(x)=\left( \int _{{\mathbb R}^{N}}\dfrac{K(y)F(u(y))}{|x-y|^\lambda }\,\textrm{d}y\right) K(x)f(u(x)), \end{aligned}$$

in \({\mathbb R}^{N}\) where \(N\ge 1\), \(s\in (0,1), \lambda \in (0,N), \mathcal {H}(x,y,t)=\int _{0}^{|t|} h(x,y,r)r\ dr,\) \( h:{\mathbb R}^{N}\times {\mathbb R}^{N}\times [0,\infty )\rightarrow [0,\infty )\) is a generalized N-function and \((-\Delta )^{s}_{\mathcal {H}}\) is a generalized fractional Laplace operator. The functions \(V,K:{\mathbb R}^{N}\rightarrow (0,\infty )\), non-linear function \(f:{\mathbb R}\rightarrow {\mathbb R}\) are continuous and \( F(t)=\int _{0}^{t}f(r)dr.\) First, we introduce the homogeneous fractional Musielak–Sobolev space and investigate their properties. After that, we pose the given problem in that space. To establish our existence results, we use variational technique based on the mountain pass theorem. We also prove the existence of a ground state solution by the method of Nehari manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信