{"title":"Car-Parrinello分子动力学中的空穴质量:激发动力学的洞见","authors":"Sherif Abdulkader Tawfik, Tiffany R Walsh","doi":"10.1039/d5sc00175g","DOIUrl":null,"url":null,"abstract":"In the Car-Parrinello molecular dynamics (CPMD) formalism, orbitals can be assigned different effective masses according to whether the orbital is occupied by a hole or an electron, and such masses affect the response of the orbitals to their environment. Inspired by this, we introduce and implement a novel modification of CPMD, HoleMass CPMD, in which a hole, which is a partially empty orbital, is assigned a fictitious mass that is different from fully occupied orbitals. Despite the simplicity of the approach, we find that it solves a key problem in first principles molecule dynamics simulation: for a set of carefully assigned mass values, the method is able to successfully simulate photoinduced chemical reactions, exemplified here by the ring-opening reaction in oxirane within a few femtoseconds, and cyclobutene, within a few picoseconds. Our method can reproduce the CO ring-opening of oxirane, and the correct isomerization sequence for cyclobutene: when the ring opens, the first isomer that forms is the cis isomer, followed by the trans isomer. Our method has been implemented in the Car-Parrinello package of QuantumEspresso and is available as an open-source contribution. The HoleMass CPMD method provides a new quantum chemistry tool for the simulation of excitation dynamics in molecules, and can also be applied for modelling charge localization effects in materials systems.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"15 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hole mass in Car-Parrinello molecular dynamics: insights into the dynamics of excitation\",\"authors\":\"Sherif Abdulkader Tawfik, Tiffany R Walsh\",\"doi\":\"10.1039/d5sc00175g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Car-Parrinello molecular dynamics (CPMD) formalism, orbitals can be assigned different effective masses according to whether the orbital is occupied by a hole or an electron, and such masses affect the response of the orbitals to their environment. Inspired by this, we introduce and implement a novel modification of CPMD, HoleMass CPMD, in which a hole, which is a partially empty orbital, is assigned a fictitious mass that is different from fully occupied orbitals. Despite the simplicity of the approach, we find that it solves a key problem in first principles molecule dynamics simulation: for a set of carefully assigned mass values, the method is able to successfully simulate photoinduced chemical reactions, exemplified here by the ring-opening reaction in oxirane within a few femtoseconds, and cyclobutene, within a few picoseconds. Our method can reproduce the CO ring-opening of oxirane, and the correct isomerization sequence for cyclobutene: when the ring opens, the first isomer that forms is the cis isomer, followed by the trans isomer. Our method has been implemented in the Car-Parrinello package of QuantumEspresso and is available as an open-source contribution. The HoleMass CPMD method provides a new quantum chemistry tool for the simulation of excitation dynamics in molecules, and can also be applied for modelling charge localization effects in materials systems.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc00175g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00175g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The hole mass in Car-Parrinello molecular dynamics: insights into the dynamics of excitation
In the Car-Parrinello molecular dynamics (CPMD) formalism, orbitals can be assigned different effective masses according to whether the orbital is occupied by a hole or an electron, and such masses affect the response of the orbitals to their environment. Inspired by this, we introduce and implement a novel modification of CPMD, HoleMass CPMD, in which a hole, which is a partially empty orbital, is assigned a fictitious mass that is different from fully occupied orbitals. Despite the simplicity of the approach, we find that it solves a key problem in first principles molecule dynamics simulation: for a set of carefully assigned mass values, the method is able to successfully simulate photoinduced chemical reactions, exemplified here by the ring-opening reaction in oxirane within a few femtoseconds, and cyclobutene, within a few picoseconds. Our method can reproduce the CO ring-opening of oxirane, and the correct isomerization sequence for cyclobutene: when the ring opens, the first isomer that forms is the cis isomer, followed by the trans isomer. Our method has been implemented in the Car-Parrinello package of QuantumEspresso and is available as an open-source contribution. The HoleMass CPMD method provides a new quantum chemistry tool for the simulation of excitation dynamics in molecules, and can also be applied for modelling charge localization effects in materials systems.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.