Bryan J. Crossman, Junxin Wang, Loic Perrière, Si Athena Chen, Jean-Philippe Couzinié, Maryam Ghazisaeidi, Michael J. Mills
{"title":"Ta-Re二元体系中B2相的多模态表征","authors":"Bryan J. Crossman, Junxin Wang, Loic Perrière, Si Athena Chen, Jean-Philippe Couzinié, Maryam Ghazisaeidi, Michael J. Mills","doi":"10.1016/j.actamat.2025.121097","DOIUrl":null,"url":null,"abstract":"The energy and transportation industries demand materials that retain their mechanical property at high temperatures. Refractory complex concentrated alloys (RCCAs) with a BCC + B2 microstructure offer a potential solution, where maintaining the high temperature mechanical properties can be achieved by precipitation strengthening. This depends on the B2 phase in RCCAs being thermodynamically stable with a high solvus temperature. Recently, we predicted the high temperature stability of the B2 structure in the Ta-Re binary system, using density functional theory. Here, we provide experimental evidence for the existence of this phase for the first time, using a <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 4075.6 997.6\" width=\"9.466ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(704,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-61\"></use></g><g is=\"true\" transform=\"translate(529,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-36\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(2041,0)\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(2801,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-65\"></use></g><g is=\"true\" transform=\"translate(466,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math></script></span> alloy. Despite Ta-Re binary phase diagrams predicting a single-phase BCC microstructure for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 4075.6 997.6\" width=\"9.466ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(704,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-61\"></use></g><g is=\"true\" transform=\"translate(529,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-36\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(2041,0)\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(2801,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-65\"></use></g><g is=\"true\" transform=\"translate(466,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">T</mi><msub is=\"true\"><mi is=\"true\">a</mi><mn is=\"true\">65</mn></msub><mi is=\"true\">R</mi><msub is=\"true\"><mi is=\"true\">e</mi><mn is=\"true\">35</mn></msub></mrow></math></script></span>, we show that a high Z nanoscale secondary phase appears after heat treatment at 1550 °C<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mspace width=\"0.33em\" is=\"true\" /></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 330 103.4\" width=\"0.766ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mspace is=\"true\" width=\"0.33em\"></mspace></math></span></span><script type=\"math/mml\"><math><mspace width=\"0.33em\" is=\"true\"></mspace></math></script></span>and 1100 °C<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mspace width=\"0.33em\" is=\"true\" /></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 330 103.4\" width=\"0.766ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mspace is=\"true\" width=\"0.33em\"></mspace></math></span></span><script type=\"math/mml\"><math><mspace width=\"0.33em\" is=\"true\"></mspace></math></script></span>. Scanning transmission electron microscopy (STEM) revealed that this phase has a cubic structure and is equiatomic TaRe though B2 superlattice reflections were absent in fast Fourier transforms (FFT) and diffraction patterns (DPs). DP simulations indicate that the B2 TaRe superlattice reflections are up to two orders of magnitude weaker than their fundamental reflections, making their detection challenging via electron microscopy. Neutron diffraction confirmed the second phase had a B2 structure. This study identified a previously unobserved high temperature stable B2 phase in the Ta-Re system, enabling the development of new high temperature BCC + B2 RCCAs.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Modal Characterization of the B2 Phase in the Ta-Re Binary System\",\"authors\":\"Bryan J. Crossman, Junxin Wang, Loic Perrière, Si Athena Chen, Jean-Philippe Couzinié, Maryam Ghazisaeidi, Michael J. Mills\",\"doi\":\"10.1016/j.actamat.2025.121097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy and transportation industries demand materials that retain their mechanical property at high temperatures. Refractory complex concentrated alloys (RCCAs) with a BCC + B2 microstructure offer a potential solution, where maintaining the high temperature mechanical properties can be achieved by precipitation strengthening. This depends on the B2 phase in RCCAs being thermodynamically stable with a high solvus temperature. Recently, we predicted the high temperature stability of the B2 structure in the Ta-Re binary system, using density functional theory. Here, we provide experimental evidence for the existence of this phase for the first time, using a <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -747.2 4075.6 997.6\\\" width=\\\"9.466ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(704,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-61\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(529,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-36\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(2041,0)\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(2801,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-65\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(466,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math></script></span> alloy. Despite Ta-Re binary phase diagrams predicting a single-phase BCC microstructure for <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -747.2 4075.6 997.6\\\" width=\\\"9.466ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(704,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-61\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(529,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-36\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(2041,0)\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(2801,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-65\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(466,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">a</mi><mn is=\\\"true\\\">65</mn></msub><mi is=\\\"true\\\">R</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\">e</mi><mn is=\\\"true\\\">35</mn></msub></mrow></math></script></span>, we show that a high Z nanoscale secondary phase appears after heat treatment at 1550 °C<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mspace width=\\\"0.33em\\\" is=\\\"true\\\" /></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"0.24ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.12ex;\\\" viewbox=\\\"0 -51.7 330 103.4\\\" width=\\\"0.766ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace></math></span></span><script type=\\\"math/mml\\\"><math><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace></math></script></span>and 1100 °C<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mspace width=\\\"0.33em\\\" is=\\\"true\\\" /></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"0.24ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.12ex;\\\" viewbox=\\\"0 -51.7 330 103.4\\\" width=\\\"0.766ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace></math></span></span><script type=\\\"math/mml\\\"><math><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace></math></script></span>. Scanning transmission electron microscopy (STEM) revealed that this phase has a cubic structure and is equiatomic TaRe though B2 superlattice reflections were absent in fast Fourier transforms (FFT) and diffraction patterns (DPs). DP simulations indicate that the B2 TaRe superlattice reflections are up to two orders of magnitude weaker than their fundamental reflections, making their detection challenging via electron microscopy. Neutron diffraction confirmed the second phase had a B2 structure. This study identified a previously unobserved high temperature stable B2 phase in the Ta-Re system, enabling the development of new high temperature BCC + B2 RCCAs.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121097\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121097","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Modal Characterization of the B2 Phase in the Ta-Re Binary System
The energy and transportation industries demand materials that retain their mechanical property at high temperatures. Refractory complex concentrated alloys (RCCAs) with a BCC + B2 microstructure offer a potential solution, where maintaining the high temperature mechanical properties can be achieved by precipitation strengthening. This depends on the B2 phase in RCCAs being thermodynamically stable with a high solvus temperature. Recently, we predicted the high temperature stability of the B2 structure in the Ta-Re binary system, using density functional theory. Here, we provide experimental evidence for the existence of this phase for the first time, using a alloy. Despite Ta-Re binary phase diagrams predicting a single-phase BCC microstructure for , we show that a high Z nanoscale secondary phase appears after heat treatment at 1550 °Cand 1100 °C. Scanning transmission electron microscopy (STEM) revealed that this phase has a cubic structure and is equiatomic TaRe though B2 superlattice reflections were absent in fast Fourier transforms (FFT) and diffraction patterns (DPs). DP simulations indicate that the B2 TaRe superlattice reflections are up to two orders of magnitude weaker than their fundamental reflections, making their detection challenging via electron microscopy. Neutron diffraction confirmed the second phase had a B2 structure. This study identified a previously unobserved high temperature stable B2 phase in the Ta-Re system, enabling the development of new high temperature BCC + B2 RCCAs.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.