{"title":"超大规模MIMO信号检测的群信息几何方法","authors":"Jiyuan Yang;Mingrui Fan;Yan Chen;Xiqi Gao;Xiang-Gen Xia;Dirk Slock","doi":"10.1109/TSP.2025.3561023","DOIUrl":null,"url":null,"abstract":"Abstract We propose a group information geometry approach (GIGA) for ultra-massive multiple-input multiple-output (MIMO) signal detection. The signal detection task is framed as computing the approximate marginals of the a posteriori distribution of the transmitted data symbols of all users. With the approximate marginals, we perform the maximization of the a posteriori marginals (MPM) detection to recover the symbol of each user. Based on the information geometry theory and the grouping of the components of the received signal, three types of manifolds are constructed and the approximate a posteriori marginals are obtained through m-projections. The Berry-Esseen theorem is introduced to offer an approximate calculation of the m-projection, while its direct calculation is exponentially complex. In most cases, increasing the number of groups tends to reduce the computational complexity of GIGA. However, when the number of groups exceeds a certain threshold, the complexity of GIGA starts to increase. Simulation results confirm that the proposed GIGA achieves better bit error rate (BER) performance within a small number of iterations, which demonstrates that it can serve as an efficient detection method in ultra-massive MIMO systems.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2288-2303"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Information Geometry Approach for Ultra-Massive MIMO Signal Detection\",\"authors\":\"Jiyuan Yang;Mingrui Fan;Yan Chen;Xiqi Gao;Xiang-Gen Xia;Dirk Slock\",\"doi\":\"10.1109/TSP.2025.3561023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a group information geometry approach (GIGA) for ultra-massive multiple-input multiple-output (MIMO) signal detection. The signal detection task is framed as computing the approximate marginals of the a posteriori distribution of the transmitted data symbols of all users. With the approximate marginals, we perform the maximization of the a posteriori marginals (MPM) detection to recover the symbol of each user. Based on the information geometry theory and the grouping of the components of the received signal, three types of manifolds are constructed and the approximate a posteriori marginals are obtained through m-projections. The Berry-Esseen theorem is introduced to offer an approximate calculation of the m-projection, while its direct calculation is exponentially complex. In most cases, increasing the number of groups tends to reduce the computational complexity of GIGA. However, when the number of groups exceeds a certain threshold, the complexity of GIGA starts to increase. Simulation results confirm that the proposed GIGA achieves better bit error rate (BER) performance within a small number of iterations, which demonstrates that it can serve as an efficient detection method in ultra-massive MIMO systems.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"2288-2303\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980441/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980441/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Group Information Geometry Approach for Ultra-Massive MIMO Signal Detection
Abstract We propose a group information geometry approach (GIGA) for ultra-massive multiple-input multiple-output (MIMO) signal detection. The signal detection task is framed as computing the approximate marginals of the a posteriori distribution of the transmitted data symbols of all users. With the approximate marginals, we perform the maximization of the a posteriori marginals (MPM) detection to recover the symbol of each user. Based on the information geometry theory and the grouping of the components of the received signal, three types of manifolds are constructed and the approximate a posteriori marginals are obtained through m-projections. The Berry-Esseen theorem is introduced to offer an approximate calculation of the m-projection, while its direct calculation is exponentially complex. In most cases, increasing the number of groups tends to reduce the computational complexity of GIGA. However, when the number of groups exceeds a certain threshold, the complexity of GIGA starts to increase. Simulation results confirm that the proposed GIGA achieves better bit error rate (BER) performance within a small number of iterations, which demonstrates that it can serve as an efficient detection method in ultra-massive MIMO systems.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.