Shiyang Ji, Yifan Zhou, Lin Xiong, Xinyu Liu, Tong Zhu, Xiuqin Zhan, Yongli Yan, Jiannian Yao, Kang Wang, Yong Sheng Zhao
{"title":"有机非手性微晶体的非互易圆偏振激光","authors":"Shiyang Ji, Yifan Zhou, Lin Xiong, Xinyu Liu, Tong Zhu, Xiuqin Zhan, Yongli Yan, Jiannian Yao, Kang Wang, Yong Sheng Zhao","doi":"10.1021/jacs.5c05118","DOIUrl":null,"url":null,"abstract":"Organic materials are particularly appealing for circularly polarized (CP) lasers due to their remarkable chiroptical activities and exceptional optical gain properties. However, conventional organic CP lasers based on chiral molecules or microstructures typically exhibit reciprocal behavior, which complicates material synthesis and device fabrication for practical applications. In this study, we present nonreciprocal CP lasing from achiral organic microcrystals through the coupling between fluorescence linear anisotropy (<i>f</i>) and linear birefringence (LB), known as <i>f</i>-LB effect. By carefully controlling the crystallization process, we prepared triclinic and orthorhombic polymorphs with distinct molecular packing arrangements, which unlock the precise manipulation of <i>f</i>-LB coupling for efficient polarization state conversion of photons. The triclinic crystals exhibited stronger <i>f</i>-LB effect owing to the suitable angle between the emission plane and birefringence axis, resulting in robust nonreciprocal CP luminescence. More importantly, this coupling was further amplified during lasing oscillation, ultimately enabling nonreciprocal CP lasing with a dissymmetry factor of ∼1.0. These findings provide a novel approach to exploring high-performance nonreciprocal CP lasers and offer new insights into chiral photonics and optoelectronics.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"12 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal Circularly Polarized Lasing from Organic Achiral Microcrystals\",\"authors\":\"Shiyang Ji, Yifan Zhou, Lin Xiong, Xinyu Liu, Tong Zhu, Xiuqin Zhan, Yongli Yan, Jiannian Yao, Kang Wang, Yong Sheng Zhao\",\"doi\":\"10.1021/jacs.5c05118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic materials are particularly appealing for circularly polarized (CP) lasers due to their remarkable chiroptical activities and exceptional optical gain properties. However, conventional organic CP lasers based on chiral molecules or microstructures typically exhibit reciprocal behavior, which complicates material synthesis and device fabrication for practical applications. In this study, we present nonreciprocal CP lasing from achiral organic microcrystals through the coupling between fluorescence linear anisotropy (<i>f</i>) and linear birefringence (LB), known as <i>f</i>-LB effect. By carefully controlling the crystallization process, we prepared triclinic and orthorhombic polymorphs with distinct molecular packing arrangements, which unlock the precise manipulation of <i>f</i>-LB coupling for efficient polarization state conversion of photons. The triclinic crystals exhibited stronger <i>f</i>-LB effect owing to the suitable angle between the emission plane and birefringence axis, resulting in robust nonreciprocal CP luminescence. More importantly, this coupling was further amplified during lasing oscillation, ultimately enabling nonreciprocal CP lasing with a dissymmetry factor of ∼1.0. These findings provide a novel approach to exploring high-performance nonreciprocal CP lasers and offer new insights into chiral photonics and optoelectronics.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c05118\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05118","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonreciprocal Circularly Polarized Lasing from Organic Achiral Microcrystals
Organic materials are particularly appealing for circularly polarized (CP) lasers due to their remarkable chiroptical activities and exceptional optical gain properties. However, conventional organic CP lasers based on chiral molecules or microstructures typically exhibit reciprocal behavior, which complicates material synthesis and device fabrication for practical applications. In this study, we present nonreciprocal CP lasing from achiral organic microcrystals through the coupling between fluorescence linear anisotropy (f) and linear birefringence (LB), known as f-LB effect. By carefully controlling the crystallization process, we prepared triclinic and orthorhombic polymorphs with distinct molecular packing arrangements, which unlock the precise manipulation of f-LB coupling for efficient polarization state conversion of photons. The triclinic crystals exhibited stronger f-LB effect owing to the suitable angle between the emission plane and birefringence axis, resulting in robust nonreciprocal CP luminescence. More importantly, this coupling was further amplified during lasing oscillation, ultimately enabling nonreciprocal CP lasing with a dissymmetry factor of ∼1.0. These findings provide a novel approach to exploring high-performance nonreciprocal CP lasers and offer new insights into chiral photonics and optoelectronics.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.