{"title":"用于CO2还原和有机合成的高效分子铁(II)光催化剂","authors":"Yan-Nan Jing, Hai-Xu Wang, Cheng Wang, Chen Ye, Chen-Ho Tung, Li-Zhu Wu","doi":"10.1021/jacs.5c01698","DOIUrl":null,"url":null,"abstract":"Molecular catalysts used for photocatalytic reduction of CO<sub>2</sub> heavily rely on photosensitizers to harvest light and then achieve photoinduced electron transfer to the catalytic center. However, a single earth-abundant molecular metal photocatalyst to independently execute CO<sub>2</sub> reduction remains a huge challenge. Herein, we report that a polypyridyl iron(II) molecular photocatalyst <b>1</b>, FePAbipyBn, exhibits outstanding activity for CO<sub>2</sub> reduction in the presence of 1,3-diethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazole (TON 3558 for CO production and selectivity >99%). More strikingly, molecular photocatalyst <b>1</b> takes advantage of unique photoredox properties to concurrently facilitate 2e<sup>–</sup>/2H<sup>+</sup> enamine oxidation and CO<sub>2</sub> reduction, resulting in value-added products of indoles and CO. This is an inaugural instance of a photoredox reaction for CO<sub>2</sub> reduction and organic synthesis using a molecular photocatalyst.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Efficient Molecular Iron(II) Photocatalyst for Concurrent CO2 Reduction and Organic Synthesis\",\"authors\":\"Yan-Nan Jing, Hai-Xu Wang, Cheng Wang, Chen Ye, Chen-Ho Tung, Li-Zhu Wu\",\"doi\":\"10.1021/jacs.5c01698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular catalysts used for photocatalytic reduction of CO<sub>2</sub> heavily rely on photosensitizers to harvest light and then achieve photoinduced electron transfer to the catalytic center. However, a single earth-abundant molecular metal photocatalyst to independently execute CO<sub>2</sub> reduction remains a huge challenge. Herein, we report that a polypyridyl iron(II) molecular photocatalyst <b>1</b>, FePAbipyBn, exhibits outstanding activity for CO<sub>2</sub> reduction in the presence of 1,3-diethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazole (TON 3558 for CO production and selectivity >99%). More strikingly, molecular photocatalyst <b>1</b> takes advantage of unique photoredox properties to concurrently facilitate 2e<sup>–</sup>/2H<sup>+</sup> enamine oxidation and CO<sub>2</sub> reduction, resulting in value-added products of indoles and CO. This is an inaugural instance of a photoredox reaction for CO<sub>2</sub> reduction and organic synthesis using a molecular photocatalyst.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c01698\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Highly Efficient Molecular Iron(II) Photocatalyst for Concurrent CO2 Reduction and Organic Synthesis
Molecular catalysts used for photocatalytic reduction of CO2 heavily rely on photosensitizers to harvest light and then achieve photoinduced electron transfer to the catalytic center. However, a single earth-abundant molecular metal photocatalyst to independently execute CO2 reduction remains a huge challenge. Herein, we report that a polypyridyl iron(II) molecular photocatalyst 1, FePAbipyBn, exhibits outstanding activity for CO2 reduction in the presence of 1,3-diethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (TON 3558 for CO production and selectivity >99%). More strikingly, molecular photocatalyst 1 takes advantage of unique photoredox properties to concurrently facilitate 2e–/2H+ enamine oxidation and CO2 reduction, resulting in value-added products of indoles and CO. This is an inaugural instance of a photoredox reaction for CO2 reduction and organic synthesis using a molecular photocatalyst.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.