量子比特系统稳定态和魔幻态的不确定性表征

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Bowen Wang, Jiayu He, Shuangshuang Fu
{"title":"量子比特系统稳定态和魔幻态的不确定性表征","authors":"Bowen Wang,&nbsp;Jiayu He,&nbsp;Shuangshuang Fu","doi":"10.1007/s11128-025-04738-1","DOIUrl":null,"url":null,"abstract":"<div><p>For qubit systems, we propose three quantifiers of uncertainty given in the product form of uncertainties for Pauli observables. We analyze the corresponding quantum states which achieve the minimum and maximum of these quantifiers, and reveal their connections with the stabilizer formalism of fault-tolerant quantum computation. Explicitly, for the quantifier of total and quantum uncertainty, we show that the minimum and maximum uncertainty states are the stabilizer states and the <i>T</i>-type magic states, respectively. We compare our results with two recently proposed characterizations of stabilizer states and magic states via the Heisenberg uncertainty relations and refined quantum uncertainty relations. Also, we briefly discuss the situation when the uncertainty quantifiers are defined in the sum form.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty characterization of stabilizer states and magic states for qubit systems\",\"authors\":\"Bowen Wang,&nbsp;Jiayu He,&nbsp;Shuangshuang Fu\",\"doi\":\"10.1007/s11128-025-04738-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For qubit systems, we propose three quantifiers of uncertainty given in the product form of uncertainties for Pauli observables. We analyze the corresponding quantum states which achieve the minimum and maximum of these quantifiers, and reveal their connections with the stabilizer formalism of fault-tolerant quantum computation. Explicitly, for the quantifier of total and quantum uncertainty, we show that the minimum and maximum uncertainty states are the stabilizer states and the <i>T</i>-type magic states, respectively. We compare our results with two recently proposed characterizations of stabilizer states and magic states via the Heisenberg uncertainty relations and refined quantum uncertainty relations. Also, we briefly discuss the situation when the uncertainty quantifiers are defined in the sum form.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04738-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04738-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于量子比特系统,我们提出了三个以泡利可观测值不确定性的乘积形式给出的不确定性量词。我们分析了达到这些量词的最小值和最大值的对应量子态,并揭示了它们与容错量子计算的稳定器形式的联系。明确地,对于全不确定性量词和量子不确定性量词,我们证明了最小和最大不确定性状态分别是稳定状态和t型魔态。我们将我们的结果与最近提出的两种通过海森堡不确定性关系和改进的量子不确定性关系表征的稳定态和幻态进行了比较。此外,我们还简要讨论了不确定性量词以总和形式定义的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty characterization of stabilizer states and magic states for qubit systems

For qubit systems, we propose three quantifiers of uncertainty given in the product form of uncertainties for Pauli observables. We analyze the corresponding quantum states which achieve the minimum and maximum of these quantifiers, and reveal their connections with the stabilizer formalism of fault-tolerant quantum computation. Explicitly, for the quantifier of total and quantum uncertainty, we show that the minimum and maximum uncertainty states are the stabilizer states and the T-type magic states, respectively. We compare our results with two recently proposed characterizations of stabilizer states and magic states via the Heisenberg uncertainty relations and refined quantum uncertainty relations. Also, we briefly discuss the situation when the uncertainty quantifiers are defined in the sum form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信