{"title":"不完全信道下可重构智能表面辅助全双工传输的鲁棒联合主被动波束形成","authors":"Li-Hsiang Shen;Chia-Jou Ku;Kai-Ten Feng","doi":"10.1109/OJCS.2025.3556710","DOIUrl":null,"url":null,"abstract":"The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we propose a robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Simulation results demonstrate the UL/DL rate improvement are achieved by considering different levels of imperfect CSI. The proposed RAPB schemes validate their effectiveness across different RIS deployments and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms the existing methods in terms of non-robustness, deployment without RIS, conventional approximation, and half-duplex systems.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"502-518"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946837","citationCount":"0","resultStr":"{\"title\":\"Robust Joint Active and Passive Beamforming for Reconfigurable Intelligent Surface Assisted Full-Duplex Transmissions Under Imperfect Channels\",\"authors\":\"Li-Hsiang Shen;Chia-Jou Ku;Kai-Ten Feng\",\"doi\":\"10.1109/OJCS.2025.3556710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we propose a robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Simulation results demonstrate the UL/DL rate improvement are achieved by considering different levels of imperfect CSI. The proposed RAPB schemes validate their effectiveness across different RIS deployments and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms the existing methods in terms of non-robustness, deployment without RIS, conventional approximation, and half-duplex systems.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"502-518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946837\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10946837/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10946837/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Joint Active and Passive Beamforming for Reconfigurable Intelligent Surface Assisted Full-Duplex Transmissions Under Imperfect Channels
The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we propose a robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Simulation results demonstrate the UL/DL rate improvement are achieved by considering different levels of imperfect CSI. The proposed RAPB schemes validate their effectiveness across different RIS deployments and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms the existing methods in terms of non-robustness, deployment without RIS, conventional approximation, and half-duplex systems.