{"title":"基于社区的大型网络影响最大化模因算法","authors":"Mithun Roy;Indrajit Pan","doi":"10.1109/ACCESS.2025.3563308","DOIUrl":null,"url":null,"abstract":"Effective information diffusion across large-scale network is key for influence maximization. Recent research has shown a significant surge in interest in modeling, performance estimation, and seed identification across various networked systems. Moreover, a simulation of useful interactions among many significant groups within networks was developed to simulate real-world marketing and spreading information more accurately. A good diffusion model identifies the minimum number of effective seeds capable of achieving maximum diffusion effects across the network. Limited focus has been placed on measuring the strength of seeds in competitive spreading situations. There is a research gap in determining effective strategy for this purpose. This study proposes a memetic algorithm based on a community for large-scale social networks. The proposed algorithm optimizes the influence spread by identifying the most influential nodes among the communities, depending on their inter- or intra-community propagation dynamics. This algorithm combines the concept of genetic algorithm with a reachability-based local search method to accelerate the convergence process. This approach offers a robust method for maximizing the influence of network structure and interactions. An experimental evaluation on real-world social network datasets shows the performance superiority of this community-based memetic algorithm (CBMA-IM) over existing algorithms.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"72754-72768"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973070","citationCount":"0","resultStr":"{\"title\":\"Community-Based Memetic Algorithm for Influence Maximization in Large-Scale Networks\",\"authors\":\"Mithun Roy;Indrajit Pan\",\"doi\":\"10.1109/ACCESS.2025.3563308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective information diffusion across large-scale network is key for influence maximization. Recent research has shown a significant surge in interest in modeling, performance estimation, and seed identification across various networked systems. Moreover, a simulation of useful interactions among many significant groups within networks was developed to simulate real-world marketing and spreading information more accurately. A good diffusion model identifies the minimum number of effective seeds capable of achieving maximum diffusion effects across the network. Limited focus has been placed on measuring the strength of seeds in competitive spreading situations. There is a research gap in determining effective strategy for this purpose. This study proposes a memetic algorithm based on a community for large-scale social networks. The proposed algorithm optimizes the influence spread by identifying the most influential nodes among the communities, depending on their inter- or intra-community propagation dynamics. This algorithm combines the concept of genetic algorithm with a reachability-based local search method to accelerate the convergence process. This approach offers a robust method for maximizing the influence of network structure and interactions. An experimental evaluation on real-world social network datasets shows the performance superiority of this community-based memetic algorithm (CBMA-IM) over existing algorithms.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"72754-72768\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973070/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10973070/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Community-Based Memetic Algorithm for Influence Maximization in Large-Scale Networks
Effective information diffusion across large-scale network is key for influence maximization. Recent research has shown a significant surge in interest in modeling, performance estimation, and seed identification across various networked systems. Moreover, a simulation of useful interactions among many significant groups within networks was developed to simulate real-world marketing and spreading information more accurately. A good diffusion model identifies the minimum number of effective seeds capable of achieving maximum diffusion effects across the network. Limited focus has been placed on measuring the strength of seeds in competitive spreading situations. There is a research gap in determining effective strategy for this purpose. This study proposes a memetic algorithm based on a community for large-scale social networks. The proposed algorithm optimizes the influence spread by identifying the most influential nodes among the communities, depending on their inter- or intra-community propagation dynamics. This algorithm combines the concept of genetic algorithm with a reachability-based local search method to accelerate the convergence process. This approach offers a robust method for maximizing the influence of network structure and interactions. An experimental evaluation on real-world social network datasets shows the performance superiority of this community-based memetic algorithm (CBMA-IM) over existing algorithms.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.