部分遮阳条件下基于软因子临界的太阳能光伏系统MPPT控制

IF 3.3 Q3 ENERGY & FUELS
Sampson E. Nwachukwu;Komla A. Folly;Kehinde O. Awodele
{"title":"部分遮阳条件下基于软因子临界的太阳能光伏系统MPPT控制","authors":"Sampson E. Nwachukwu;Komla A. Folly;Kehinde O. Awodele","doi":"10.1109/OAJPE.2025.3560626","DOIUrl":null,"url":null,"abstract":"This paper presents a soft actor-critic (SAC)-based method for solving the solar photovoltaic (PV) Maximum Power Point Tracking (MPPT) control problem under partial shading conditions (PSCs). The MPPT method optimizes the solar PV power and ensures that it constantly operates at its “maximum power point (MPP),” regardless of the dynamics of weather conditions. Traditional MPPT methods, such as the perturb and observe (P&O) method, are commonly employed to solve the MPPT control problem. However, they often suffer from a slower convergence rate, significant oscillation near the MPP, drift problems. Additionally, in the presence of partial shading, they frequently fail to track the solar PV global maximum power point (GMPP). These problems were addressed using the deep Q-network (DQN) method. However, DQN cannot be applied to continuous action spaces. It also uses inefficient experience replay and suffers from Q-value overestimation. Thus, under PSCs and certain environmental conditions, DQN produces fluctuations of power close to the MPP or GMPP, resulting in power loss. To solve the MPPT control task, mathematical models of the Markov Decision Process, solar PV system, and boost converter were developed. Key hyperparameters affecting the SAC algorithm’s performance were also investigated. Furthermore, the P&O method was developed for comparison. Simulation results show that the SAC-based MPPT method achieved better tracking accuracy than the DQN method under standard testing conditions, varying irradiance levels, and PSCs. Also, it is shown that both the DQN and SAC methods have superior tracking performance compared to the P&O method under similar environmental conditions tested.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"194-208"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965705","citationCount":"0","resultStr":"{\"title\":\"Soft Actor-Critic-Based MPPT Control of Solar PV Systems Under Partial Shading Conditions\",\"authors\":\"Sampson E. Nwachukwu;Komla A. Folly;Kehinde O. Awodele\",\"doi\":\"10.1109/OAJPE.2025.3560626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a soft actor-critic (SAC)-based method for solving the solar photovoltaic (PV) Maximum Power Point Tracking (MPPT) control problem under partial shading conditions (PSCs). The MPPT method optimizes the solar PV power and ensures that it constantly operates at its “maximum power point (MPP),” regardless of the dynamics of weather conditions. Traditional MPPT methods, such as the perturb and observe (P&O) method, are commonly employed to solve the MPPT control problem. However, they often suffer from a slower convergence rate, significant oscillation near the MPP, drift problems. Additionally, in the presence of partial shading, they frequently fail to track the solar PV global maximum power point (GMPP). These problems were addressed using the deep Q-network (DQN) method. However, DQN cannot be applied to continuous action spaces. It also uses inefficient experience replay and suffers from Q-value overestimation. Thus, under PSCs and certain environmental conditions, DQN produces fluctuations of power close to the MPP or GMPP, resulting in power loss. To solve the MPPT control task, mathematical models of the Markov Decision Process, solar PV system, and boost converter were developed. Key hyperparameters affecting the SAC algorithm’s performance were also investigated. Furthermore, the P&O method was developed for comparison. Simulation results show that the SAC-based MPPT method achieved better tracking accuracy than the DQN method under standard testing conditions, varying irradiance levels, and PSCs. Also, it is shown that both the DQN and SAC methods have superior tracking performance compared to the P&O method under similar environmental conditions tested.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"194-208\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965705\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965705/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10965705/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于软行为者评价(SAC)的方法来解决部分遮阳条件下太阳能光伏(PV)最大功率点跟踪(MPPT)控制问题。MPPT方法优化了太阳能光伏发电,并确保它在“最大功率点(MPP)”下持续运行,而不受天气条件的影响。解决MPPT控制问题通常采用传统的MPPT方法,如摄动观察法(P&O)。然而,它们往往存在收敛速度较慢、MPP附近振荡明显、漂移等问题。此外,在存在部分遮阳的情况下,它们经常无法跟踪太阳能光伏全球最大功率点(GMPP)。使用深度q -网络(DQN)方法解决了这些问题。然而,DQN不能应用于连续的动作空间。它还使用低效的经验重放,并遭受q值高估的困扰。因此,在psc和某些环境条件下,DQN产生接近MPP或GMPP的功率波动,导致功率损失。为解决MPPT控制问题,建立了马尔可夫决策过程、太阳能光伏系统和升压变换器的数学模型。研究了影响SAC算法性能的关键超参数。此外,还开发了P&O方法进行比较。仿真结果表明,在标准测试条件下、不同辐照度条件下、不同psc条件下,基于sac的MPPT方法比DQN方法具有更好的跟踪精度。实验结果表明,在相似的环境条件下,DQN和SAC方法都比P&O方法具有更好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Actor-Critic-Based MPPT Control of Solar PV Systems Under Partial Shading Conditions
This paper presents a soft actor-critic (SAC)-based method for solving the solar photovoltaic (PV) Maximum Power Point Tracking (MPPT) control problem under partial shading conditions (PSCs). The MPPT method optimizes the solar PV power and ensures that it constantly operates at its “maximum power point (MPP),” regardless of the dynamics of weather conditions. Traditional MPPT methods, such as the perturb and observe (P&O) method, are commonly employed to solve the MPPT control problem. However, they often suffer from a slower convergence rate, significant oscillation near the MPP, drift problems. Additionally, in the presence of partial shading, they frequently fail to track the solar PV global maximum power point (GMPP). These problems were addressed using the deep Q-network (DQN) method. However, DQN cannot be applied to continuous action spaces. It also uses inefficient experience replay and suffers from Q-value overestimation. Thus, under PSCs and certain environmental conditions, DQN produces fluctuations of power close to the MPP or GMPP, resulting in power loss. To solve the MPPT control task, mathematical models of the Markov Decision Process, solar PV system, and boost converter were developed. Key hyperparameters affecting the SAC algorithm’s performance were also investigated. Furthermore, the P&O method was developed for comparison. Simulation results show that the SAC-based MPPT method achieved better tracking accuracy than the DQN method under standard testing conditions, varying irradiance levels, and PSCs. Also, it is shown that both the DQN and SAC methods have superior tracking performance compared to the P&O method under similar environmental conditions tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信