Keziban Atacan , Alican Bahadır Semerci , Nuray Güy , Nubar Mammadova , Mustafa Ozmen , Ahmed Nuri Kursunlu
{"title":"水溶性咪唑功能化柱[5]芳烃的制备及其抗菌、抗氧化、催化还原4-硝基苯酚的活性研究","authors":"Keziban Atacan , Alican Bahadır Semerci , Nuray Güy , Nubar Mammadova , Mustafa Ozmen , Ahmed Nuri Kursunlu","doi":"10.1016/j.bioorg.2025.108544","DOIUrl":null,"url":null,"abstract":"<div><div>Macrocyclic supramolecular materials such as pillar[<em>n</em>]arenes play a prominent role in enhancing antibacterial activity through host-guest interactions. Herein, the water-soluble pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 were prepared, and their structure and chemical compositions were analyzed through multiple characterization methods. Afterward, the prepared imidazole-functionalized pillar[5]arenes were examined for antibacterial activity against <em>Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Salmonella typhimurium</em> bacteria. Also, the antioxidant activities of the prepared imidazole-functionalized pillar[5]arenes were investigated using 2,2-Diphenyl-1-picrylhydrazyl. In addition, the catalytic activities of pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 by reduction of 4-nitrophenol were studied, indicating the catalytic reduction of 4-nitrophenol was 93.0 % for the pillar[5]arene imidazole-1 catalyst at 18 min. Comparison of the reactivity of pillar[5]arene imidazole-1 with that of pillar[5]arene imidazole-2 shows an increase in antibacterial and catalytic activity. This study summarized that using suitable catalysts, catalytic reduction aims to convert the most harmful and toxic organic compound 4-nitrophenol into non-toxic 4-aminophenol and popularize it in industry.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"161 ","pages":"Article 108544"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of water-soluble imidazole-functionalized pillar[5]arenes: The activities of antibacterial and antioxidant, catalytic reduction of 4-nitrophenol\",\"authors\":\"Keziban Atacan , Alican Bahadır Semerci , Nuray Güy , Nubar Mammadova , Mustafa Ozmen , Ahmed Nuri Kursunlu\",\"doi\":\"10.1016/j.bioorg.2025.108544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macrocyclic supramolecular materials such as pillar[<em>n</em>]arenes play a prominent role in enhancing antibacterial activity through host-guest interactions. Herein, the water-soluble pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 were prepared, and their structure and chemical compositions were analyzed through multiple characterization methods. Afterward, the prepared imidazole-functionalized pillar[5]arenes were examined for antibacterial activity against <em>Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Salmonella typhimurium</em> bacteria. Also, the antioxidant activities of the prepared imidazole-functionalized pillar[5]arenes were investigated using 2,2-Diphenyl-1-picrylhydrazyl. In addition, the catalytic activities of pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 by reduction of 4-nitrophenol were studied, indicating the catalytic reduction of 4-nitrophenol was 93.0 % for the pillar[5]arene imidazole-1 catalyst at 18 min. Comparison of the reactivity of pillar[5]arene imidazole-1 with that of pillar[5]arene imidazole-2 shows an increase in antibacterial and catalytic activity. This study summarized that using suitable catalysts, catalytic reduction aims to convert the most harmful and toxic organic compound 4-nitrophenol into non-toxic 4-aminophenol and popularize it in industry.</div></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"161 \",\"pages\":\"Article 108544\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206825004249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825004249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preparation of water-soluble imidazole-functionalized pillar[5]arenes: The activities of antibacterial and antioxidant, catalytic reduction of 4-nitrophenol
Macrocyclic supramolecular materials such as pillar[n]arenes play a prominent role in enhancing antibacterial activity through host-guest interactions. Herein, the water-soluble pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 were prepared, and their structure and chemical compositions were analyzed through multiple characterization methods. Afterward, the prepared imidazole-functionalized pillar[5]arenes were examined for antibacterial activity against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Salmonella typhimurium bacteria. Also, the antioxidant activities of the prepared imidazole-functionalized pillar[5]arenes were investigated using 2,2-Diphenyl-1-picrylhydrazyl. In addition, the catalytic activities of pillar[5]arene imidazole-1 and pillar[5]arene imidazole-2 by reduction of 4-nitrophenol were studied, indicating the catalytic reduction of 4-nitrophenol was 93.0 % for the pillar[5]arene imidazole-1 catalyst at 18 min. Comparison of the reactivity of pillar[5]arene imidazole-1 with that of pillar[5]arene imidazole-2 shows an increase in antibacterial and catalytic activity. This study summarized that using suitable catalysts, catalytic reduction aims to convert the most harmful and toxic organic compound 4-nitrophenol into non-toxic 4-aminophenol and popularize it in industry.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.