利用HDBN和CAEN框架优化医疗系统疾病预测

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-04-25 DOI:10.1016/j.mex.2025.103338
G. Prabaharan , S.M. Udhaya Sankar , V. Anusuya , K. Jaya Deepthi , Rayappan Lotus , R. Sugumar
{"title":"利用HDBN和CAEN框架优化医疗系统疾病预测","authors":"G. Prabaharan ,&nbsp;S.M. Udhaya Sankar ,&nbsp;V. Anusuya ,&nbsp;K. Jaya Deepthi ,&nbsp;Rayappan Lotus ,&nbsp;R. Sugumar","doi":"10.1016/j.mex.2025.103338","DOIUrl":null,"url":null,"abstract":"<div><div>Classification and segmentation play a pivotal role in transforming decision-making processes in healthcare, IoT, and edge computing. However, existing methodologies often struggle with accuracy, precision, and specificity when applied to large, heterogeneous datasets, particularly in minimizing false positives and negatives. To address these challenges, we propose a robust hybrid framework comprising three key phases: feature extraction using a Hybrid Deep Belief Network (HDBN), dynamic prediction aggregation via a Custom Adaptive Ensemble Network (CAEN), and an optimization mechanism ensuring adaptability and robustness. Extensive evaluations on four diverse datasets demonstrate the framework’s superior performance, achieving 93 % accuracy, 87 % precision, 95 % specificity, and 91 % recall. Advanced metrics, including a Matthews Correlation Coefficient of 0.8932, validate its reliability. The proposed framework establishes a new benchmark for scalable, high-performance classification and segmentation, offering robust solutions for real-world applications and paving the way for future integration with explainable AI and real-time systems.<ul><li><span>•</span><span><div>Designed a novel hybrid framework integrating HDBN and CAEN for adaptive feature extraction and prediction.</div></span></li><li><span>•</span><span><div>Proposed dynamic prediction aggregation and optimization strategies enhancing robustness across diverse data scenarios.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103338"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized disease prediction in healthcare systems using HDBN and CAEN framework\",\"authors\":\"G. Prabaharan ,&nbsp;S.M. Udhaya Sankar ,&nbsp;V. Anusuya ,&nbsp;K. Jaya Deepthi ,&nbsp;Rayappan Lotus ,&nbsp;R. Sugumar\",\"doi\":\"10.1016/j.mex.2025.103338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Classification and segmentation play a pivotal role in transforming decision-making processes in healthcare, IoT, and edge computing. However, existing methodologies often struggle with accuracy, precision, and specificity when applied to large, heterogeneous datasets, particularly in minimizing false positives and negatives. To address these challenges, we propose a robust hybrid framework comprising three key phases: feature extraction using a Hybrid Deep Belief Network (HDBN), dynamic prediction aggregation via a Custom Adaptive Ensemble Network (CAEN), and an optimization mechanism ensuring adaptability and robustness. Extensive evaluations on four diverse datasets demonstrate the framework’s superior performance, achieving 93 % accuracy, 87 % precision, 95 % specificity, and 91 % recall. Advanced metrics, including a Matthews Correlation Coefficient of 0.8932, validate its reliability. The proposed framework establishes a new benchmark for scalable, high-performance classification and segmentation, offering robust solutions for real-world applications and paving the way for future integration with explainable AI and real-time systems.<ul><li><span>•</span><span><div>Designed a novel hybrid framework integrating HDBN and CAEN for adaptive feature extraction and prediction.</div></span></li><li><span>•</span><span><div>Proposed dynamic prediction aggregation and optimization strategies enhancing robustness across diverse data scenarios.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103338\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125001840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125001840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分类和细分在改变医疗保健、物联网和边缘计算的决策过程中发挥着关键作用。然而,当应用于大型异构数据集时,现有的方法往往在准确性、精密度和特异性方面存在问题,特别是在最小化假阳性和假阴性方面。为了解决这些挑战,我们提出了一个鲁棒混合框架,包括三个关键阶段:使用混合深度信念网络(HDBN)的特征提取,通过自适应集成网络(CAEN)的动态预测聚合,以及确保适应性和鲁棒性的优化机制。对四个不同数据集的广泛评估表明,该框架具有优异的性能,达到93%的准确度,87%的精度,95%的特异性和91%的召回率。先进的指标,包括马修斯相关系数为0.8932,验证其可靠性。提出的框架为可扩展、高性能的分类和分割建立了新的基准,为现实世界的应用提供了强大的解决方案,并为未来与可解释的人工智能和实时系统的集成铺平了道路。•设计了一种新的混合框架,集成HDBN和CAEN,用于自适应特征提取和预测。•提出了动态预测聚合和优化策略,增强了不同数据场景的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized disease prediction in healthcare systems using HDBN and CAEN framework

Optimized disease prediction in healthcare systems using HDBN and CAEN framework
Classification and segmentation play a pivotal role in transforming decision-making processes in healthcare, IoT, and edge computing. However, existing methodologies often struggle with accuracy, precision, and specificity when applied to large, heterogeneous datasets, particularly in minimizing false positives and negatives. To address these challenges, we propose a robust hybrid framework comprising three key phases: feature extraction using a Hybrid Deep Belief Network (HDBN), dynamic prediction aggregation via a Custom Adaptive Ensemble Network (CAEN), and an optimization mechanism ensuring adaptability and robustness. Extensive evaluations on four diverse datasets demonstrate the framework’s superior performance, achieving 93 % accuracy, 87 % precision, 95 % specificity, and 91 % recall. Advanced metrics, including a Matthews Correlation Coefficient of 0.8932, validate its reliability. The proposed framework establishes a new benchmark for scalable, high-performance classification and segmentation, offering robust solutions for real-world applications and paving the way for future integration with explainable AI and real-time systems.
  • Designed a novel hybrid framework integrating HDBN and CAEN for adaptive feature extraction and prediction.
  • Proposed dynamic prediction aggregation and optimization strategies enhancing robustness across diverse data scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信