{"title":"奇异夸克质量有限值(ms≠0)和重子数密度(n)对奇异星结构的作用","authors":"Pradip Kumar Chattopadhyay, Debadri Bhattacharjee","doi":"10.1016/j.dark.2025.101927","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of non-zero strange quark mass <span><math><mrow><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span> and baryon number density <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> on the properties, and maximum mass of strange stars. An exact relativistic solution of Einstein field equations is obtained using Tolman-IV potential and modified MIT bag model equation of state, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><mi>ρ</mi><mo>−</mo><mn>4</mn><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> depends on bag constant <span><math><mi>B</mi></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, and <span><math><mi>n</mi></math></span>. In line with CERN’s findings, the transition from hadronic matter to quark–gluon plasma at high densities requires a more dynamic EoS. Unlike the standard MIT bag model with fixed <span><math><mi>B</mi></math></span>, the present approach employs Woods–Saxon parametrisation for <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, improving the description of phase transitions. Solutions of TOV equations indicate that for <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, the maximum mass reaches <span><math><mrow><mn>2</mn><mo>.</mo><mn>01</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> with a radius of 10.96 Km at <span><math><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. Increasing <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> reduces these values. Notably, a correlation exists between <span><math><mi>n</mi></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, where the hadron–quark transition occurs at higher densities with increasing <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. Stability analysis suggests that a chosen <span><math><mrow><mi>n</mi><mspace></mspace><mrow><mo>(</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>578</mn><mspace></mspace><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>70</mn><mspace></mspace><mi>M</mi><mi>e</mi><mi>V</mi><mo>/</mo><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> satisfies causality, energy, and stability criteria, making the model physically viable.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"48 ","pages":"Article 101927"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of finite value of strange quark mass (ms≠0) and baryon number density (n) on the structure of strange stars\",\"authors\":\"Pradip Kumar Chattopadhyay, Debadri Bhattacharjee\",\"doi\":\"10.1016/j.dark.2025.101927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of non-zero strange quark mass <span><math><mrow><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span> and baryon number density <span><math><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math></span> on the properties, and maximum mass of strange stars. An exact relativistic solution of Einstein field equations is obtained using Tolman-IV potential and modified MIT bag model equation of state, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><mi>ρ</mi><mo>−</mo><mn>4</mn><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> depends on bag constant <span><math><mi>B</mi></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, and <span><math><mi>n</mi></math></span>. In line with CERN’s findings, the transition from hadronic matter to quark–gluon plasma at high densities requires a more dynamic EoS. Unlike the standard MIT bag model with fixed <span><math><mi>B</mi></math></span>, the present approach employs Woods–Saxon parametrisation for <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, improving the description of phase transitions. Solutions of TOV equations indicate that for <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, the maximum mass reaches <span><math><mrow><mn>2</mn><mo>.</mo><mn>01</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> with a radius of 10.96 Km at <span><math><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. Increasing <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> reduces these values. Notably, a correlation exists between <span><math><mi>n</mi></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, where the hadron–quark transition occurs at higher densities with increasing <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. Stability analysis suggests that a chosen <span><math><mrow><mi>n</mi><mspace></mspace><mrow><mo>(</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>578</mn><mspace></mspace><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>70</mn><mspace></mspace><mi>M</mi><mi>e</mi><mi>V</mi><mo>/</mo><mi>f</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> satisfies causality, energy, and stability criteria, making the model physically viable.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"48 \",\"pages\":\"Article 101927\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425001207\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425001207","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Role of finite value of strange quark mass (ms≠0) and baryon number density (n) on the structure of strange stars
This study investigates the influence of non-zero strange quark mass and baryon number density on the properties, and maximum mass of strange stars. An exact relativistic solution of Einstein field equations is obtained using Tolman-IV potential and modified MIT bag model equation of state, , where depends on bag constant , , and . In line with CERN’s findings, the transition from hadronic matter to quark–gluon plasma at high densities requires a more dynamic EoS. Unlike the standard MIT bag model with fixed , the present approach employs Woods–Saxon parametrisation for , improving the description of phase transitions. Solutions of TOV equations indicate that for , the maximum mass reaches with a radius of 10.96 Km at . Increasing reduces these values. Notably, a correlation exists between and , where the hadron–quark transition occurs at higher densities with increasing . Stability analysis suggests that a chosen with satisfies causality, energy, and stability criteria, making the model physically viable.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.