{"title":"PregAN-NET:在可解释的计算框架中解决gan的类不平衡,以预测怀孕期间考虑不良反应的药物安全性","authors":"Anushka Chaurasia , Deepak Kumar , Yogita","doi":"10.1016/j.jbi.2025.104832","DOIUrl":null,"url":null,"abstract":"<div><div>Adverse Drug Reactions (ADRs) during pregnancy pose significant risks to both the mother and the fetus. Conventional approaches to predict ADR are inadequate due to ethical restrictions that prevent performing medication studies in pregnant women, leading to restricted data samples. Hence, computational techniques have been promising for ADR predictions. However, most of these techniques have focused on the general population and face the challenge of class imbalance and lack of model interpretability. In the present work, an ensemble learning-based PregAN-NET framework has been proposed that addresses the issue of class imbalance by generating synthetic data employing Conditional Tabular Generative Adversarial Network (CTGAN) and integrates neural network and gradient boosting as a Boosted Neural Ensemble (BNE) architecture to predict safe and unsafe drugs considering their adverse reactions during pregnancy. Furthermore, the SHAP method has been employed to enhance the post-hoc interpretability of the BNE architecture by analyzing the contribution of different features towards prediction. The proposed framework has been applied to chemical and biological properties from PubChem and DrugBank, along with class labels from the ADReCS database. CTGAN has been evaluated for data balancing, showing a 2% to 5% performance improvement over SMOTE. The BNE architecture has outperformed six state-of-the-art methods by achieving mean ROC-AUC scores between 77.00% and 90.00% for chemical data, 66.00% and 74.00% for biological data, and 70.00% to 75.00% for combined datasets. Further, the top 20 contributory features in prediction corresponding to the different drug properties have been identified.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"166 ","pages":"Article 104832"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PregAN-NET: Addressing Class Imbalance with GANs in Interpretable Computational Framework for Predicting Safety Profile of Drugs Considering Adverse Reactions During Pregnancy\",\"authors\":\"Anushka Chaurasia , Deepak Kumar , Yogita\",\"doi\":\"10.1016/j.jbi.2025.104832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adverse Drug Reactions (ADRs) during pregnancy pose significant risks to both the mother and the fetus. Conventional approaches to predict ADR are inadequate due to ethical restrictions that prevent performing medication studies in pregnant women, leading to restricted data samples. Hence, computational techniques have been promising for ADR predictions. However, most of these techniques have focused on the general population and face the challenge of class imbalance and lack of model interpretability. In the present work, an ensemble learning-based PregAN-NET framework has been proposed that addresses the issue of class imbalance by generating synthetic data employing Conditional Tabular Generative Adversarial Network (CTGAN) and integrates neural network and gradient boosting as a Boosted Neural Ensemble (BNE) architecture to predict safe and unsafe drugs considering their adverse reactions during pregnancy. Furthermore, the SHAP method has been employed to enhance the post-hoc interpretability of the BNE architecture by analyzing the contribution of different features towards prediction. The proposed framework has been applied to chemical and biological properties from PubChem and DrugBank, along with class labels from the ADReCS database. CTGAN has been evaluated for data balancing, showing a 2% to 5% performance improvement over SMOTE. The BNE architecture has outperformed six state-of-the-art methods by achieving mean ROC-AUC scores between 77.00% and 90.00% for chemical data, 66.00% and 74.00% for biological data, and 70.00% to 75.00% for combined datasets. Further, the top 20 contributory features in prediction corresponding to the different drug properties have been identified.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"166 \",\"pages\":\"Article 104832\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000619\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000619","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
PregAN-NET: Addressing Class Imbalance with GANs in Interpretable Computational Framework for Predicting Safety Profile of Drugs Considering Adverse Reactions During Pregnancy
Adverse Drug Reactions (ADRs) during pregnancy pose significant risks to both the mother and the fetus. Conventional approaches to predict ADR are inadequate due to ethical restrictions that prevent performing medication studies in pregnant women, leading to restricted data samples. Hence, computational techniques have been promising for ADR predictions. However, most of these techniques have focused on the general population and face the challenge of class imbalance and lack of model interpretability. In the present work, an ensemble learning-based PregAN-NET framework has been proposed that addresses the issue of class imbalance by generating synthetic data employing Conditional Tabular Generative Adversarial Network (CTGAN) and integrates neural network and gradient boosting as a Boosted Neural Ensemble (BNE) architecture to predict safe and unsafe drugs considering their adverse reactions during pregnancy. Furthermore, the SHAP method has been employed to enhance the post-hoc interpretability of the BNE architecture by analyzing the contribution of different features towards prediction. The proposed framework has been applied to chemical and biological properties from PubChem and DrugBank, along with class labels from the ADReCS database. CTGAN has been evaluated for data balancing, showing a 2% to 5% performance improvement over SMOTE. The BNE architecture has outperformed six state-of-the-art methods by achieving mean ROC-AUC scores between 77.00% and 90.00% for chemical data, 66.00% and 74.00% for biological data, and 70.00% to 75.00% for combined datasets. Further, the top 20 contributory features in prediction corresponding to the different drug properties have been identified.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.