Peiwen Li , Tianyu Liu , Heyu Ma , Dan Li , Chengcheng Liu , Dean Ta
{"title":"全波形超声骨成像的多任务神经网络","authors":"Peiwen Li , Tianyu Liu , Heyu Ma , Dan Li , Chengcheng Liu , Dean Ta","doi":"10.1016/j.cmpb.2025.108807","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>It is a challenging task to use ultrasound for bone imaging, as the bone tissue has a complex structure with high acoustic impedance and speed-of-sound (SOS). Recently, full waveform inversion (FWI) has shown promising imaging for musculoskeletal tissues. However, the FWI showed a limited ability and tended to produce artifacts in bone imaging because the inversion process would be more easily trapped in local minimum for bone tissue with a large discrepancy in SOS distribution between bony and soft tissues. In addition, the application of FWI required a high computational burden and relatively long iterations. The objective of this study was to achieve high-resolution ultrasonic imaging of bone using a deep learning-based FWI approach.</div></div><div><h3>Method</h3><div>In this paper, we proposed a novel network named CEDD-Unet. The CEDD-Unet adopts a Dual-Decoder architecture, with the first decoder tasked with reconstructing the SOS model, and the second decoder tasked with finding the main boundaries between bony and soft tissues. To effectively capture multi-scale spatial-temporal features from ultrasound radio frequency (RF) signals, we integrated a Convolutional LSTM (ConvLSTM) module. Additionally, an Efficient Multi-scale Attention (EMA) module was incorporated into the encoder to enhance feature representation and improve reconstruction accuracy.</div></div><div><h3>Results</h3><div>Using the ultrasonic imaging modality with a ring array transducer, the performance of CEDD-Unet was tested on the SOS model datasets from human bones (noted as Dataset1) and mouse bones (noted as Dataset2), and compared with three classic reconstruction architectures (Unet, Unet++, and Att-Unet), four state-of-the-art architecture (InversionNet, DD-Net, UPFWI, and DEFE-Unet). Experiments showed that CEDD-Unet outperforms all competing methods, achieving the lowest MAE of 23.30 on Dataset1 and 25.29 on Dataset2, the highest SSIM of 0.9702 on Dataset1 and 0.9550 on Dataset2, and the highest PSNR of 30.60 dB on Dataset1 and 32.87 dB on Dataset2. Our method demonstrated superior reconstruction quality, with clearer bone boundaries, reduced artifacts, and improved consistency with ground truth. Moreover, CEDD-Unet surpasses traditional FWI by producing sharper skeletal SOS reconstructions, reducing computational cost, and eliminating the reliance for an initial model. Ablation studies further confirm the effectiveness of each network component.</div></div><div><h3>Conclusion</h3><div>The results suggest that CEDD-Unet is a promising deep learning-based FWI method for high-resolution bone imaging, with the potential to reconstruct accurate and sharp-edged skeletal SOS models.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"267 ","pages":"Article 108807"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-task neural network for full waveform ultrasonic bone imaging\",\"authors\":\"Peiwen Li , Tianyu Liu , Heyu Ma , Dan Li , Chengcheng Liu , Dean Ta\",\"doi\":\"10.1016/j.cmpb.2025.108807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>It is a challenging task to use ultrasound for bone imaging, as the bone tissue has a complex structure with high acoustic impedance and speed-of-sound (SOS). Recently, full waveform inversion (FWI) has shown promising imaging for musculoskeletal tissues. However, the FWI showed a limited ability and tended to produce artifacts in bone imaging because the inversion process would be more easily trapped in local minimum for bone tissue with a large discrepancy in SOS distribution between bony and soft tissues. In addition, the application of FWI required a high computational burden and relatively long iterations. The objective of this study was to achieve high-resolution ultrasonic imaging of bone using a deep learning-based FWI approach.</div></div><div><h3>Method</h3><div>In this paper, we proposed a novel network named CEDD-Unet. The CEDD-Unet adopts a Dual-Decoder architecture, with the first decoder tasked with reconstructing the SOS model, and the second decoder tasked with finding the main boundaries between bony and soft tissues. To effectively capture multi-scale spatial-temporal features from ultrasound radio frequency (RF) signals, we integrated a Convolutional LSTM (ConvLSTM) module. Additionally, an Efficient Multi-scale Attention (EMA) module was incorporated into the encoder to enhance feature representation and improve reconstruction accuracy.</div></div><div><h3>Results</h3><div>Using the ultrasonic imaging modality with a ring array transducer, the performance of CEDD-Unet was tested on the SOS model datasets from human bones (noted as Dataset1) and mouse bones (noted as Dataset2), and compared with three classic reconstruction architectures (Unet, Unet++, and Att-Unet), four state-of-the-art architecture (InversionNet, DD-Net, UPFWI, and DEFE-Unet). Experiments showed that CEDD-Unet outperforms all competing methods, achieving the lowest MAE of 23.30 on Dataset1 and 25.29 on Dataset2, the highest SSIM of 0.9702 on Dataset1 and 0.9550 on Dataset2, and the highest PSNR of 30.60 dB on Dataset1 and 32.87 dB on Dataset2. Our method demonstrated superior reconstruction quality, with clearer bone boundaries, reduced artifacts, and improved consistency with ground truth. Moreover, CEDD-Unet surpasses traditional FWI by producing sharper skeletal SOS reconstructions, reducing computational cost, and eliminating the reliance for an initial model. Ablation studies further confirm the effectiveness of each network component.</div></div><div><h3>Conclusion</h3><div>The results suggest that CEDD-Unet is a promising deep learning-based FWI method for high-resolution bone imaging, with the potential to reconstruct accurate and sharp-edged skeletal SOS models.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"267 \",\"pages\":\"Article 108807\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016926072500224X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016926072500224X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multi-task neural network for full waveform ultrasonic bone imaging
Background and objective
It is a challenging task to use ultrasound for bone imaging, as the bone tissue has a complex structure with high acoustic impedance and speed-of-sound (SOS). Recently, full waveform inversion (FWI) has shown promising imaging for musculoskeletal tissues. However, the FWI showed a limited ability and tended to produce artifacts in bone imaging because the inversion process would be more easily trapped in local minimum for bone tissue with a large discrepancy in SOS distribution between bony and soft tissues. In addition, the application of FWI required a high computational burden and relatively long iterations. The objective of this study was to achieve high-resolution ultrasonic imaging of bone using a deep learning-based FWI approach.
Method
In this paper, we proposed a novel network named CEDD-Unet. The CEDD-Unet adopts a Dual-Decoder architecture, with the first decoder tasked with reconstructing the SOS model, and the second decoder tasked with finding the main boundaries between bony and soft tissues. To effectively capture multi-scale spatial-temporal features from ultrasound radio frequency (RF) signals, we integrated a Convolutional LSTM (ConvLSTM) module. Additionally, an Efficient Multi-scale Attention (EMA) module was incorporated into the encoder to enhance feature representation and improve reconstruction accuracy.
Results
Using the ultrasonic imaging modality with a ring array transducer, the performance of CEDD-Unet was tested on the SOS model datasets from human bones (noted as Dataset1) and mouse bones (noted as Dataset2), and compared with three classic reconstruction architectures (Unet, Unet++, and Att-Unet), four state-of-the-art architecture (InversionNet, DD-Net, UPFWI, and DEFE-Unet). Experiments showed that CEDD-Unet outperforms all competing methods, achieving the lowest MAE of 23.30 on Dataset1 and 25.29 on Dataset2, the highest SSIM of 0.9702 on Dataset1 and 0.9550 on Dataset2, and the highest PSNR of 30.60 dB on Dataset1 and 32.87 dB on Dataset2. Our method demonstrated superior reconstruction quality, with clearer bone boundaries, reduced artifacts, and improved consistency with ground truth. Moreover, CEDD-Unet surpasses traditional FWI by producing sharper skeletal SOS reconstructions, reducing computational cost, and eliminating the reliance for an initial model. Ablation studies further confirm the effectiveness of each network component.
Conclusion
The results suggest that CEDD-Unet is a promising deep learning-based FWI method for high-resolution bone imaging, with the potential to reconstruct accurate and sharp-edged skeletal SOS models.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.