UDGS-SLAM:单眼SLAM的单深度辅助高斯溅射

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-04-26 DOI:10.1016/j.array.2025.100400
Mostafa Mansour , Ahmed Abdelsalam , Ari Happonen , Jari Porras , Esa Rahtu
{"title":"UDGS-SLAM:单眼SLAM的单深度辅助高斯溅射","authors":"Mostafa Mansour ,&nbsp;Ahmed Abdelsalam ,&nbsp;Ari Happonen ,&nbsp;Jari Porras ,&nbsp;Esa Rahtu","doi":"10.1016/j.array.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM. This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATE-RMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100400"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UDGS-SLAM: UniDepth Assisted Gaussian Splatting for Monocular SLAM\",\"authors\":\"Mostafa Mansour ,&nbsp;Ahmed Abdelsalam ,&nbsp;Ari Happonen ,&nbsp;Jari Porras ,&nbsp;Esa Rahtu\",\"doi\":\"10.1016/j.array.2025.100400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM. This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATE-RMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"26 \",\"pages\":\"Article 100400\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259000562500027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562500027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

最近在单眼神经深度估计方面的进展,特别是UniDepth网络取得的进展,促使人们研究将UniDepth集成到一个高斯飞溅框架中,用于单眼SLAM。本研究提出了一种新的方法UDGS-SLAM,该方法消除了在高斯溅射框架内对RGB-D传感器进行深度估计的必要性。UDGS-SLAM通过统计滤波保证估计深度的局部一致性,并联合优化摄像机轨迹和高斯场景表示参数。该方法实现了高保真渲染图像和相机轨迹的低ATE-RMSE。使用TUM RGB-D数据集对UDGS-SLAM的性能进行了严格评估,并对几种基准方法进行了基准测试,在各种场景中都展示了卓越的性能。此外,还进行了消融研究,以验证设计选择并研究不同网络骨干编码器对系统性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UDGS-SLAM: UniDepth Assisted Gaussian Splatting for Monocular SLAM
Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM. This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATE-RMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信