{"title":"有效且蛋白水解稳定的双双芳基钉钉GLP-1R/GIPR肽双激动剂的设计","authors":"Yifang Yang , Qing Lin","doi":"10.1016/j.bmc.2025.118215","DOIUrl":null,"url":null,"abstract":"<div><div>The successful treatment of type 2 diabetes and obesity with tirzepatide highlights the dual agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) as a powerful new generation of anti-diabetic drugs. However, tirzepatide and other GLP-1R/GIPR dual agonists currently in clinical development are linear peptides susceptible to proteolytic cleavage, thus preventing their uses as oral drugs. Previously, we reported the design of the proteolytically stable GLP-1R/GIPR peptide dual agonists via sidechain biaryl stapling. Although the stapled peptides exhibit improved proteolytic stability, they are still not sufficiently stable for oral delivery. Here, we report on the design and synthesis of more stable GLP-1R/GIPR dual agonists through a combined use of double biaryl stapling and α-methylation. One of the double-stapled and α-methylated peptides, DA23-Bpy<sup>10,17</sup>Bpy<sup>21,28</sup>, showed more potent and balanced dual agonist activities than tirzepatide, a half-life of 30 min in simulated intestinal fluid, and equal glucose lowering activity compared to semaglutide in oral glucose tolerance test in rodents. These potent and proteolytically stable double biaryl-stapled analogs should provide valuable lead peptides for developing oral GLP-1R/GIPR dual agonist drugs to treat diabetes and obesity.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"125 ","pages":"Article 118215"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of potent and proteolytically stable double biaryl-stapled GLP-1R/GIPR peptide dual agonists\",\"authors\":\"Yifang Yang , Qing Lin\",\"doi\":\"10.1016/j.bmc.2025.118215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The successful treatment of type 2 diabetes and obesity with tirzepatide highlights the dual agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) as a powerful new generation of anti-diabetic drugs. However, tirzepatide and other GLP-1R/GIPR dual agonists currently in clinical development are linear peptides susceptible to proteolytic cleavage, thus preventing their uses as oral drugs. Previously, we reported the design of the proteolytically stable GLP-1R/GIPR peptide dual agonists via sidechain biaryl stapling. Although the stapled peptides exhibit improved proteolytic stability, they are still not sufficiently stable for oral delivery. Here, we report on the design and synthesis of more stable GLP-1R/GIPR dual agonists through a combined use of double biaryl stapling and α-methylation. One of the double-stapled and α-methylated peptides, DA23-Bpy<sup>10,17</sup>Bpy<sup>21,28</sup>, showed more potent and balanced dual agonist activities than tirzepatide, a half-life of 30 min in simulated intestinal fluid, and equal glucose lowering activity compared to semaglutide in oral glucose tolerance test in rodents. These potent and proteolytically stable double biaryl-stapled analogs should provide valuable lead peptides for developing oral GLP-1R/GIPR dual agonist drugs to treat diabetes and obesity.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"125 \",\"pages\":\"Article 118215\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089625001567\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625001567","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design of potent and proteolytically stable double biaryl-stapled GLP-1R/GIPR peptide dual agonists
The successful treatment of type 2 diabetes and obesity with tirzepatide highlights the dual agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) as a powerful new generation of anti-diabetic drugs. However, tirzepatide and other GLP-1R/GIPR dual agonists currently in clinical development are linear peptides susceptible to proteolytic cleavage, thus preventing their uses as oral drugs. Previously, we reported the design of the proteolytically stable GLP-1R/GIPR peptide dual agonists via sidechain biaryl stapling. Although the stapled peptides exhibit improved proteolytic stability, they are still not sufficiently stable for oral delivery. Here, we report on the design and synthesis of more stable GLP-1R/GIPR dual agonists through a combined use of double biaryl stapling and α-methylation. One of the double-stapled and α-methylated peptides, DA23-Bpy10,17Bpy21,28, showed more potent and balanced dual agonist activities than tirzepatide, a half-life of 30 min in simulated intestinal fluid, and equal glucose lowering activity compared to semaglutide in oral glucose tolerance test in rodents. These potent and proteolytically stable double biaryl-stapled analogs should provide valuable lead peptides for developing oral GLP-1R/GIPR dual agonist drugs to treat diabetes and obesity.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.