Yen-Peng Liao Ph.D. , Haonan Xiao Ph.D. , Peilin Wang M.Sc. , Tian Li Ph.D. , Todd A. Aguilera M.D., Ph.D. , Justin D. Visak Ph.D. , Andrew R. Godley Ph.D. , You Zhang Ph.D. , Jing Cai Ph.D. , Jie Deng Ph.D.
{"title":"利用超高质量四维磁共振成像估计肝癌放射治疗的内靶体积","authors":"Yen-Peng Liao Ph.D. , Haonan Xiao Ph.D. , Peilin Wang M.Sc. , Tian Li Ph.D. , Todd A. Aguilera M.D., Ph.D. , Justin D. Visak Ph.D. , Andrew R. Godley Ph.D. , You Zhang Ph.D. , Jing Cai Ph.D. , Jie Deng Ph.D.","doi":"10.1016/j.adro.2025.101774","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Accurate internal target volume (ITV) estimation is essential for effective and safe radiation therapy in liver cancer. This study evaluates the clinical value of an ultraquality 4-dimensional magnetic resonance imaging (UQ 4D-MRI) technique for ITV estimation.</div></div><div><h3>Methods and Materials</h3><div>The UQ 4D-MRI technique maps motion information from a low spatial resolution dynamic volumetric MRI onto a high-resolution 3-dimensional MRI used for radiation treatment planning. It was validated using a motion phantom and data from 13 patients with liver cancer. ITV generated from UQ 4D-MRI (ITV<sub>4D</sub>) was compared with those obtained through isotropic expansions (ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub>) and those measured using conventional 4D-computed tomography (computed tomography-based ITV, ITV<sub>CT</sub>) for each patient.</div></div><div><h3>Results</h3><div>Phantom studies showed a displacement measurement difference of <5% between UQ 4D-MRI and single-slice 2-dimensional cine MRI. In patient studies, the maximum superior-inferior displacements of the tumor on UQ 4D-MRI showed no significant difference compared with single-slice 2-dimensional cine imaging (<em>P</em> = .985). Computed tomography-based ITV showed no significant difference (<em>P</em> = .72) with ITV<sub>4D</sub>, whereas ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub> significantly overestimated the volume by 29.0% (<em>P</em> = .002) and 120.7% (<em>P</em> < .001) compared with ITV<sub>4D</sub>, respectively.</div></div><div><h3>Conclusions</h3><div>UQ 4D-MRI enables accurate motion assessment for liver tumors, facilitating precise ITV delineation for radiation treatment planning. Despite uncertainties from artificial intelligence-based delineation and variations in patients’ respiratory patterns, UQ 4D-MRI excels at capturing tumor motion trajectories, potentially improving treatment planning accuracy and reducing margins in liver cancer radiation therapy.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"10 6","pages":"Article 101774"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Target Volume Estimation for Liver Cancer Radiation Therapy Using an Ultra Quality 4-Dimensional Magnetic Resonance Imaging\",\"authors\":\"Yen-Peng Liao Ph.D. , Haonan Xiao Ph.D. , Peilin Wang M.Sc. , Tian Li Ph.D. , Todd A. Aguilera M.D., Ph.D. , Justin D. Visak Ph.D. , Andrew R. Godley Ph.D. , You Zhang Ph.D. , Jing Cai Ph.D. , Jie Deng Ph.D.\",\"doi\":\"10.1016/j.adro.2025.101774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Accurate internal target volume (ITV) estimation is essential for effective and safe radiation therapy in liver cancer. This study evaluates the clinical value of an ultraquality 4-dimensional magnetic resonance imaging (UQ 4D-MRI) technique for ITV estimation.</div></div><div><h3>Methods and Materials</h3><div>The UQ 4D-MRI technique maps motion information from a low spatial resolution dynamic volumetric MRI onto a high-resolution 3-dimensional MRI used for radiation treatment planning. It was validated using a motion phantom and data from 13 patients with liver cancer. ITV generated from UQ 4D-MRI (ITV<sub>4D</sub>) was compared with those obtained through isotropic expansions (ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub>) and those measured using conventional 4D-computed tomography (computed tomography-based ITV, ITV<sub>CT</sub>) for each patient.</div></div><div><h3>Results</h3><div>Phantom studies showed a displacement measurement difference of <5% between UQ 4D-MRI and single-slice 2-dimensional cine MRI. In patient studies, the maximum superior-inferior displacements of the tumor on UQ 4D-MRI showed no significant difference compared with single-slice 2-dimensional cine imaging (<em>P</em> = .985). Computed tomography-based ITV showed no significant difference (<em>P</em> = .72) with ITV<sub>4D</sub>, whereas ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub> significantly overestimated the volume by 29.0% (<em>P</em> = .002) and 120.7% (<em>P</em> < .001) compared with ITV<sub>4D</sub>, respectively.</div></div><div><h3>Conclusions</h3><div>UQ 4D-MRI enables accurate motion assessment for liver tumors, facilitating precise ITV delineation for radiation treatment planning. Despite uncertainties from artificial intelligence-based delineation and variations in patients’ respiratory patterns, UQ 4D-MRI excels at capturing tumor motion trajectories, potentially improving treatment planning accuracy and reducing margins in liver cancer radiation therapy.</div></div>\",\"PeriodicalId\":7390,\"journal\":{\"name\":\"Advances in Radiation Oncology\",\"volume\":\"10 6\",\"pages\":\"Article 101774\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452109425000624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109425000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Internal Target Volume Estimation for Liver Cancer Radiation Therapy Using an Ultra Quality 4-Dimensional Magnetic Resonance Imaging
Purpose
Accurate internal target volume (ITV) estimation is essential for effective and safe radiation therapy in liver cancer. This study evaluates the clinical value of an ultraquality 4-dimensional magnetic resonance imaging (UQ 4D-MRI) technique for ITV estimation.
Methods and Materials
The UQ 4D-MRI technique maps motion information from a low spatial resolution dynamic volumetric MRI onto a high-resolution 3-dimensional MRI used for radiation treatment planning. It was validated using a motion phantom and data from 13 patients with liver cancer. ITV generated from UQ 4D-MRI (ITV4D) was compared with those obtained through isotropic expansions (ITV2 mm and ITV5 mm) and those measured using conventional 4D-computed tomography (computed tomography-based ITV, ITVCT) for each patient.
Results
Phantom studies showed a displacement measurement difference of <5% between UQ 4D-MRI and single-slice 2-dimensional cine MRI. In patient studies, the maximum superior-inferior displacements of the tumor on UQ 4D-MRI showed no significant difference compared with single-slice 2-dimensional cine imaging (P = .985). Computed tomography-based ITV showed no significant difference (P = .72) with ITV4D, whereas ITV2 mm and ITV5 mm significantly overestimated the volume by 29.0% (P = .002) and 120.7% (P < .001) compared with ITV4D, respectively.
Conclusions
UQ 4D-MRI enables accurate motion assessment for liver tumors, facilitating precise ITV delineation for radiation treatment planning. Despite uncertainties from artificial intelligence-based delineation and variations in patients’ respiratory patterns, UQ 4D-MRI excels at capturing tumor motion trajectories, potentially improving treatment planning accuracy and reducing margins in liver cancer radiation therapy.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.